СОЗДАНИЕ НАНОСТРУКТУРИРОВАННЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ ДЛЯ ХРАНЕНИЯ ЭНЕРГИИ

Authors

  • А.B. Turganbay Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, ave. Al-Farabi 71, Almaty, Kazakhstan
  • B.Т. Lesbayev Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, ave. Al-Farabi 71, Almaty, Kazakhstan
  • М. Nazhipkyzy Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, ave. Al-Farabi 71, Almaty, Kazakhstan
  • Джеффри Митчелл Polytechnic Institute, Leiria, Portugal

DOI:

https://doi.org/10.18321/cpc322

Keywords:

nanomaterials, supercapacitor, lithium current source, battery, activated carbon, electrode.

Abstract

The article provides an overview of modern methods for creating nanostructured composite materials that are used in systems for energy storage and storage. The advantages and disadvantages of the developed methods are shown and the basic principles of the functioning of various systems for energy storage and storage are considered. A comparative analysis of electrochemical, physical, performance characteristics, as well as the advantages and disadvantages of supercapacitors and batteries is carried out. Problems and issues of the use of nanomaterials and nanotechnologies in the field of development and creation of supercapacitors, lithium current sources and hydrogen storage systems are discussed. The paper also presents the results of research by the authors of the article on the development and creation of electrodes based on rice husks for supercapacitors.

References

(1). B.E. Conway Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications, Plenum Press, New York (1999).

(2). A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon and W.V. Schalkwijk, Nature Mater., 4 (2005) 366. https://doi.org/10.1038/nmat1368

(3). M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Rouf, Nano lett., 8 (2008) 3498. https://doi.org/10.1021/nl802558y

(4). H.P. Wu, D.W. He, Y.S. Wang, M. Fu, Z.L. Liu, J.G. Wang and H.T. Wang, IEEE, (2010) 465.

(5). J. Liu, L. Zhang, H.B. Wu, J. Lin, Z. Shen, X.W.D. LouHighperformance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci., 7 (2014), pp. 3709-3719. https://doi.org/10.1039/C4EE01475H

(6). C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. ZhangA review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev., 44 (2015), pp. 7484-7539. https://doi.org/10.1039/C5CS00303B

(7). Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, J. Phys. Chem. C, 113 (2009) 13103. https://doi.org/10.1021/jp902214f

(8). Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L.C. Qin, Phys. Chem. Chem. Phys, 13 (2011) 17615. https://doi.org/10.1039/c1cp21910c

(9). P . Tamilarasan, A.K. Mishra and S. Ramaprabhu, IEEE, (2011).

(10). C. Du and N. Pan, Nanotech. Law & Business, 4 (2007)569.

(11). J. Li, X. Cheng, A. Shashurin and M. Keidar, Sci. Res., 1 (2012) 1.

(12). D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu and H.M. Cheng, Acsnano, 3 (2009) 1745. https://doi.org/10.1021/nn900297m

(13). M.S. Halper and J. C.Ellenbogen, MitreNanosystems Group, (2006).

(14). P. Sharma and T.S. Bhatti, Energy Conversion and Management, 51 (2010) 2901. https://doi.org/10.1016/j.enconman.2010.06.031

(15). A. Khaligh, Z. Li, IEEE Trans. Veh. Technol. 59 (2010) 2806. https://doi.org/10.1109/TVT.2010.2047877

(16). M. Beidaghi, C. Wang, Adv. Funct. Mater. 22 (2012) 4501. https://doi.org/10.1002/adfm.201201292

(17). Y. Wang и Y. Xia, Adv. Mater., 2013, 25, 5336–5342. https://doi.org/10.1002/adma.201301932

(18). А.Г. Пандольфо и А.Ф. Холленкамп, Дж. Источники энергии, 2006, 157, 11–27.

(19). М. Инагаки, Х. Конно и О. Танаике, Дж. Источники энергии, 2010, 195, 7880–7903.

(20). H. Guo, Q. Gao, J. Power Sources, 2009, 186, 551–556. https://doi.org/10.1016/j.jpowsour.2008.10.024

(21). H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nano Lett., 201, 11, 2472–2477. https://doi.org/10.1021/nl2009058

(22). Мансуров З.А., Павленко В.В., Бийсенбаев М.А., Курбатов А.П., Захидов А.А., Приходько Н.Г., Cleszyk P., Beguin F. Изучение факторов, влияющих на электрохимические свойства электродных материалов суперконденсаторов // VIII Международный симпозиум «Горение и плазмохимия» Международная научно-техническая конференция «Энергоэффективность-2015», 176-179.

(23). S. Bhadra, D. Khastgir, N.K. Singha, J.H. LeeProgress in preparation, processing and applications of polyaniline. Prog. Polym. Sci., 34 (2009), pp. 783-810. https://doi.org/10.1016/j.progpolymsci.2009.04.003

(24). K. Wang, J. Huang, Z. Wei Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C, 114 (2010), pp. 8062-8067. https://doi.org/10.1021/jp9113255

(25). D.W. Hatchett, M. Josowicz, J. JanataComparison of chemically and electrochemically synthesized polyaniline films. J. Electrochem. Soc., 146 (1999), pp. 4535-4538. https://doi.org/10.1149/1.1392670

(26). K. Wang, J. Huang, Z. Wei Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C, 114 (2010), pp. 8062-8067. https://doi.org/10.1021/jp9113255

(27). D. Wang, X. Wang, X. Yang, R. Yu, L. Ge, H. Shu Polyaniline modification and performance enhancement of lithiumrich cathode material based on layered-spinel hybrid structure. J. Power Sources, 293 (2015), pp. 89-94. https://doi.org/10.1016/j.jpowsour.2015.05.058

(28). Bloomberg (2011). China Shuts 90% of Lead Acid Battery Makers in State Crackdown. http://www.bloomberg. com/news/2011-11-15/ china-shuts-90-of-lead-acidbattery- makersassociation-says.html

(29). Green Car Congress. (2009). Panasonic Develops New Higher-Capacity 18650 Li-Ion Cells: Application of Silicon-Based Alloy in Anode. Osaka: Japan. http://www. greencarcongress.com/ 2009/12/panasonic-20091225. html [accessed Oct. 23, 2013].

(30). Salot, R., Martin, S., Oukassi, S., Bedjaoui, M., and Ubrig, J. (2009). Microbattery technology overview and associated multilayer encapsulation process. Appl. Surf. Sci. 256S, S54–S57. https://doi.org/10.1016/j.apsusc.2009.09.086

(31). H. Yang, S. Kannappan, A.S. Pandian, J.H Jang, Y.S. Lee and W. Lu, Z. Bo, Z. Wen, H. Kim, G. Lu, K. Yu and J. Chen, Carbon, 50 (2012) 4379. https://doi.org/10.1016/j.carbon.2012.05.014

(32). A.P. Singh, P. B. Karandikar and N.K. Tiwari, IEEE, (2015) 669.

(33). X.-W. Gao, J.-Z. Wang, S.-L. Chou, H.-K. Liu Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery. J. Power Sources, 220 (2012), pp. 47-53. https://doi.org/10.1016/j.jpowsour.2012.07.114

(34). L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, O.G. Schmidt Hierarchical MoS2/Polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater., 25 (2013), pp. 1180-1184. https://doi.org/10.1002/adma.201203999

(35). C. Lai, H. Zhang, G. Li, X. Gao Mesoporous polyaniline/ TiO2 microspheres with core–shell structure as anode materials for lithium ion battery. J. Power Sources, 196 (2011), pp. 4735-4740. https://doi.org/10.1016/j.jpowsour.2011.01.077

(36). X. Huang, J. Tu, X. Xia, X. Wang, J. Xiang Nickel foamsupported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochem. Commun., 10 (2008), pp. 1288-1290. https://doi.org/10.1016/j.elecom.2008.06.020

(37). S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources, 257 (2014), pp. 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103

(38). Yang X.-Q., Mc Breen J., Yoon W.-S., Yoshio M., Wang H., Fukuda K., et al. (2002). Structural studies of the new carbon-coated silicon anode materials using synchrotron-based in situ XRD. Electrochem. commun. 4, 893–897. https://doi.org/10.1016/S1388-2481(02)00483-6

(39). Ryu J.H., Kim J.W., Sung Y.E., and Oh S.M. (2004). Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid State Lett. 7, A306–A309. https://doi.org/10.1149/1.1792242

(40). D. Wang, M. Gao, H. Pan, J. Wang, Y. Liu, J. Power Sources 256 (2014) 190–199. https://doi.org/10.1016/j.jpowsour.2013.12.128

(41). M.L. Terranova, S. Orlanducci, E. Tamburri, V. Guglielmotti, M. Rossi, J. Power Sources 246 (2014) 167–177. https://doi.org/10.1016/j.jpowsour.2013.07.065

(42). J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie, J.P. Peres, D. Talaga, M. Couzi, J.M. Tarascon, Adv. Funct. Mater. 17 (2010) 1765–1774. https://doi.org/10.1002/adfm.200600937

(43). F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, L. Chen, J. Electrochem. Soc. 162 (2015) A2509–A2528. https://doi.org/10.1149/2.0131514jes

(44). A.M. Kurmanbayeva, A. Sadykova, A. Adi, Z. Mansurov, Z. Bakenov Silica from Kazakhstan Rice Husk as an Anode Material for LIBs // Eurasian Chemico-Technological Journal 21 (2019) 75–81. https://doi.org/10.18321/ectj794

(45). H2 Activation, Reversibly Metal-free compound readily breaks and makes hydrogen Elizabeth Wilson Chemical & Engineering News November 20, 2006.

(46). MacDiarmid, A.G., Epstein, A.J. (1989). Polyanilines: A novel class of conducting polymers. Faraday Discuss. Chem. Soc., Vol. 88, pp. 317-332. https://doi.org/10.1039/dc9898800317

(47). Cho S.J., Choo K., Kim D.P., Kim J.W. (2007). H2 sorption in HCl-treated polyaniline and polypyrrole. Catalysis Today, Vol. 120, No. 3-4, pp. 336-340. https://doi.org/10.1016/j.cattod.2006.09.007

(48). Panella B., Kossykh L., Dettlaff-Weglikowska U., Hrischer, M., Zerbi G., Roth S. (2005). Volumetric measurement of hydrogen storage in HCl-treated polyaniline and polypyrrole. Synthetic Metals, Vol. 151, No. 3, pp. 208-210. https://doi.org/10.1016/j.synthmet.2005.05.004

(49). Dillon A.C.; Jones K.M., Bekkedahl T.A., Kiang C.H., Bethune D.S., Heben M.J. (1997) Storage of hydrogen in single-walled carbon Nanotubes, Nature (London), Vol.386, No. 6623, pp. 377-379. https://doi.org/10.1038/386377a0

(50). Nikitin A., Li X., Zhang Z., Ogasawara H., Dai H., Nilsson A. (2008). Hydrogen storage in carbon nanotubes through the formation of stable C–H bonds. Nano Lettters, Vol. 8, No. 1, pp. 162-167. https://doi.org/10.1021/nl072325k

(51). Hwang J.Y., Hwang S.H., Lee Sim, K.S., Kim J.W. (2002). Synthesis and hydrogen storage of carbon nanofibers, Syn. Metals, Vol. 126, No.1, pp. 81-85. https://doi.org/10.1016/S0379-6779(01)00543-4

(52). H. Ding, M. Wan, Y.Wei (2007). Controlling the Diameter of Polyaniline Nanofibers by Adjusting the Oxidant Redox Potential. Advanced Materials, Vol. 19, pp. 465-469. https://doi.org/10.1002/adma.200600831

(53). A. Huczko (2000). Template-based synthesis of nanomaterials. Appl. Phys. A: Materials Science & Processing, Vol. 70, No. 4, pp. 365-376. https://doi.org/10.1007/s003390051050

(54). Zhang D., Wang Y. (2006). Synthesis and applications of one dimensional nanostructured polyaniline: An overview. Mater. Sci. аnd Eng. B, Vol. 134, No. 1, pp. 9-19. https://doi.org/10.1016/j.mseb.2006.07.037

(55). Chiou N-R., Lee L.J., Epstein A.J. (2008). Porous membrane controlled polymerization of nanofibers of polyaniline and its derivatives. J. Materials Chem., Vol. 18, pp. 2085-2089. https://doi.org/10.1039/b719320c

(56). Кричевский Г.Е. http://www.rusnor.org/pubs/ reviews/12800.htm

Published

2023-07-22

How to Cite

Turganbay А., Lesbayev, B., Nazhipkyzy М., & Митчелл, Д. (2023). СОЗДАНИЕ НАНОСТРУКТУРИРОВАННЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ ДЛЯ ХРАНЕНИЯ ЭНЕРГИИ. Combustion and Plasma Chemistry, 17(3), 158–166. https://doi.org/10.18321/cpc322

Most read articles by the same author(s)

1 2 > >>