Catalysts for hydrocarbon hydrogenation processes
DOI:
https://doi.org/10.18321/cpc278Keywords:
catalysts, nanochemistry, hydrogenation, hy-drocarbons, oil refining.Abstract
The article gives a review of the literature on the main groups of catalysts for the hydrogenation of hydrocarbons. Thе rеviеw dеscribеs thе mоst аctivеly studiеd hydrоgеnаtiоn cаtаlysts in rеcеnt yеаrs, аmоng which mеtаl-mоdifiеd cаtаlysts оn vаriоus suppоrts оccupy lеаding pоsitiоns. Hydrоgеnаtiоn cаtаlysts such аs nickеl cаtаlysts оn diffеrеnt cаrriеrs, nickеl-chrоmium cаtаlyst, cаtаlysts оn thе bаsis оf nоblе mеtаls, including pаllаdium, plаtinum, rhоdium аnd ruthеnium аnd mеthоds оf thеir prеpаrаtiоn, structurе, cаtаlytic аctivity аnd thе mеchаnism оf аctiоn in prоcеssеs оf hydrоgеnаtiоn оf unsаturаtеd аnd аrоmаtic cоmpоunds аrе cоnsidеrеd. Thе usе оf diffеrеnt cаtаlysts fоr thе prоductiоn оf еnvirоnmеntаlly friеndly mоtоr fuеls is cоnsidеrеd. Spеcifiеd fеаturеs оf thе prоpеrtiеs оf cаtаlysts аrе indicаtеd dеpеnding оn thе mеthоd оf prеpаrаtiоn аnd cоmpоsitiоn. It is shown that chemical technology and organic synthesis need to competitive a product with smaller prime cost from local raw materials, the technology of creation of new, effective, ecologically acceptable catalysts for the account by the need of the solution of a problem of receiving ecologically pure gasoline, without causing harm to the environmental environment is also demanded based on the analysis of the existing catalysts of hydrogenation of unsaturated and aromatic hydrocarbons. Tasks are set for the researcher to create new approaches to solving existing economic and environmental problems associated with high energy costs and environmental pollution.
References
(1). Abu-Reziq, R.; Shenglof, M.; Penn, L.; Cohen, T.; Blum, J. Hydrogenation of arenes, alkenes and alkynes catalyzed by a sol–gel entrapped mixture of [Rh(COD)Cl]2 and Na[HRu3(CO)11. // Journal of Molecular Catalysis A: Chemical. 2008. V. 290. № 1–2. P. 30-34. https://doi.org/10.1016/j.molcata.2008.05.002
(2). Du, W.Q.; Rong, Z.M.; Liang, Y.; Wang, Y.; Lu, X.Y.; Wang, Y.F.; Lu, L.H. Chemoselective hydrogenation of unsaturated aldehydes with modified Pd/C catalyst. // Chinese Chemical Letters. 2012. V. 23. № 7. P. 773-776. https://doi.org/10.1016/j.cclet.2012.05.002
(3). Chen, J.; Liu, X.; Zhang, F. Composition regulation of bimetallic RuPd catalysts supported on porous alumina spheres for selective hydrogenation. // Chemical Engineering Journal. 2015. V. 259. P. 43–52. https://doi.org/10.1016/j.cej.2014.07.049
(4). Marín-Astorga, N.; Pecchi, G.; Fierro, J.L.G.; Reyes, P. A comparative study of Pd supported on MCM-41 and SiO2 in the liquid phase hydrogenation of phenyl alkyl acetylenes mixtures. // Journal of Molecular Catalysis A: Chemical. 2005. V. 231. № 1–2. P. 67–74. https://doi.org/10.1016/j.molcata.2005.01.004
(5). Быкова М.В., Булавченко О.А., Ермаков Д.Ю., Лебедев М.Ю., Яковлев В.А., Пармон В.Н . // Катализ в промышленности. 2010. № 5. С.45
(6). Han Yuxiang, Peng Du, Xu Zhaoyi, Wan Haiqin, Zheng Shourong, Dongqiang Zhu. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene // Chem. Commun. V. 49. 2013. P. 8350–8352. https://doi.org/10.1039/c3cc43511c
(7). Кричко А.А., Озеренко А.А., Фросин С.Б. и др. Получение и применение псевдогомогенных катализаторов для гидрогенизации и крекинга углеводородного сырья // Катализ в нефтеперерабатывающей промышленности. 2018. № 3. С. 23-32.
(8). Song C., Ma X. Ultra-clean diesel fuels by deep desulphurization and deep dearomatization of middle distillates Practical Advances of Petroleum Processing. 2006. Vol. 2. P. 317-347. https://doi.org/10.1007/978-0-387-25789-1_11
(9). Size-controlled synthesis of nickel nanoparticles / Y. Hou [et al] // Applied Surface Science. 2017. V. 241. P. 218-222. https://doi.org/10.1016/j.apsusc.2004.09.045
(10). Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity / K. M. Bratlie [et al] // Nano Letters. 2017. V. 7. P. 3097–3101. https://doi.org/10.1021/nl0716000
(11). Bond, G.C.; Wells, P.B. Hydrogenation of the acetylene. III. Reaction of acetylene with hydrogen catalysed by аlumina-supported rhodium and iridium. // J. Catal. 1966. V. 5. № 3. P. 419-427. https://doi.org/10.1016/S0021-9517(66)80061-1
(12). Kennedy, D.R.; Webb, G.; Jackson, S.D.; Lennon, D. Propyne hydrogenation over aluminasupported palladium and platinum cata-lysts. // Applied Catalysis A: General. 2004. V. 259. P. 109-210. https://doi.org/10.1016/j.apcata.2003.09.018
(13). Garcia, P.E.; Lynch, A.S.; Mona-ghan, A.; Jackson, S.D. Using modifiers to specify stereochemistry and enhance selectivity and activity in palladium-catalysed, liquid phase hydrogenation of alkynes. // Catalysis Today. 2011. V. 164. P. 548-551. https://doi.org/10.1016/j.cattod.2010.10.012
(14). Mastalir, Á.; Király, Z.; Berger, F. Comparative study of size-quantized Pd-montmorillonite catalysts in liquidphase semi-hydrogenations of alkynes. // Applied Catalysis A: General. 2004. V. 269. P. 161-168. https://doi.org/10.1016/j.apcata.2004.04.012
(15). Kacer, P.; Kuzma, M.; Cerveny, L. The molecular structure effects in hydrogenation of cycloalkyl substituted alkynes and alkenes on platinum and palladium catalysts. // Applied Catalysis A: General. 2004. V. 259. P. 179-183. https://doi.org/10.1016/j.apcata.2003.09.025
(16). Chandrasekhar, S.; Narsihmulu, Ch.; Chandrasekhar, G.; Shyamsunder, T. Pd/CaCO3 in liquid poly(ethylene glycol) (PEG): an easy and efficient recycle for partial reduction of alkynes to cis-olefins under a hydrogen atmosphere. // Tetrahedron Letters. 2004. V. 45. P. 2421-2423. https://doi.org/10.1016/j.tetlet.2004.01.097
(17). Selektivnoe gidrirovanie fenilacetilena v stirol na nanochastitsakh zolota / S. A. Nikolaev, N. A. Permyakov, V. V. Smirnov, A. Yu. Vasil′kov, S. N. Lanin // Kinetika I kataliz. 2010. V. 51, №. 2. P. 305–309.
(18). In Soo Park, Min Serk Kwon, Kyung Yeon Kang, Jae Sung Lee, Jaiwook Park. Rhodium and Iridium Nanoparticles Entrapped in Aluminum Oxyhydroxide Nanofibers: Catalysts for Hydrogenations of Arenes and Ketones at Room Temperature with Hydrogen Balloon // Adv. Synth. Catal. V. 349. 2007. P. 2039–2047. https://doi.org/10.1002/adsc.200600651
(19). Antal Sárkány. Acetylene Hydrogenation on SiO2 Supported Gold Nanoparticles // React. Kinet. Catal. Lett. V. 96. № 1. 2009. P. 43–54. https://doi.org/10.1007/s11144-009-5438-3
(20). Catalytic Consequences of Particle Size and Chloride Promotion in the Ring Opening of Cyclopentane on Pt/ Al2O3 / H. Shi [et al] // ACS Catalysis. 2018. V. 3. P. 328−338. https://doi.org/10.1021/cs300636j
(21). Yu Tingting, Wang Jiaqing, Li Xinming, Cao Xueqin, Gu Hongwei. An Improved Method for the Complete Hydrogena-tion of Aromatic Compounds under 1 Bar H 2 with Platinum Nanowires // Chem.Cat. Chem. V. 5. 2013. P. 2852–2855. https://doi.org/10.1002/cctc.201300394
(22). Niu, M.; Wang, Y.; Li, W.; Jiang, J.; Jin, Z. Highly efficient and recyclable ruthenium nanoparticle catalyst for semihydrogenation of alkynes. // Catalysis Communications. 2013. V. 38. P. 77-81. https://doi.org/10.1016/j.catcom.2013.04.015
(23). Denicourt-Nowicki A., Ponchel A., Monflier E., Rou-coux A. Methylated cyclodextrins: an efficient protective agent in water for zerovalent ruthenium nanoparticles and a supramolecular shuttle in alkene and arene hydrogenation reactions // Dalton Trans. V. 12. 2007. Р. 5714–5719. https://doi.org/10.1039/b713989f
(24). Byunghoon Yoon, Horng-Bin Pan, and Chien M. Wai. Relative Catalytic Activities of Carbon Nanotube- Supported Metallic Nanoparticles for Room- Temperature Hydrogenation of Benzene // J. Phys. Chem. C. V. 113. № 4. 2009. P. 1137–1640. https://doi.org/10.1021/jp809366w
(25). Riley, C., De La Riva, A., Zhou, S., Wan, Q., Peterson, E., Artyushkova, K., … Datye, A. (2019). Synthesis of Nickel- Doped Ceria Catalysts for Selective Acetylene Hydrogenation. ChemCatChem. https://doi.org/10.1002/cctc.201801976
(26). Selektivnoe gidrirovanie s ispol′zovaniem nanokatalizatorov / S.V. Levanova // Zhurnal Prikladnoj Khimii. 2009. V. 82, № 5. P. 830−833. [in Russian]
(27). Roucoux, A., Schulz J., Patin H. Arene Hydrogenation with a Stabilised Aqueous Rhodium (0) Suspension: A Major Effect of the Surfactant Counter-Anion // Advanced Synthesis & Catalysis. V. 345. № 1–2. 2003. Р. 222–229. https://doi.org/10.1002/adsc.200390016
(28). A. Temirkhan, Z.A. Mansurov, S. K. Tanyrbergenova, N. K. Zhylybayeva, and G. M. Naurzbayeva, A. Aitugan. The impact of natural carrier as part of catalysts to catalytic selrctivity in benzene hydrogenation. ІХ Международный симпозиум «Физика и химия углеродных материалов/наноинженерия» Международная конференция «Наноэнергетические материалы и наноэнергетика». Алматы, Казахстан, 2016. С. 35-40.
(29). S. K. Tanyrbergenova, A. Temirkhan, Z. A. Mansurov, N. K. Zhylybayeva, and G. M. Naurzbayeva. Rh-promoted carbon catalysts to obtain clean components of motor fuels. International journal of chemical engineering and applications. Vol. 7. No.1. February, 2016. P. 11-16. https://doi.org/10.7763/IJCEA.2016.V7.533
(30). Ultrafine Ni–Co–W–B amorphous alloys and their activities in benzene hydrogenation to cyclohexane / M.- H. Qiao [et al] // Catalysis Letters. 2001. V. 71. Р. 187-192.