Obtaining small-sized heat-energy briquette of carbon-free flame
DOI:
https://doi.org/10.18321/cpc548Keywords:
activated carbon, rice husk, adsorption, pores, fuel briquette, combustion, specific surface areaAbstract
The article aims to develop a technology for producing a modern fuel briquette from rice husks (RH), which can be used in a complex, gives little flame, and does not emit toxic substances during combustion. The possibility of using such briquettes is used for heating and cooking on the street and unequipped places. Consumers of briquettes can be military units in combat operations or exercises, expeditions, and tourists working in areas where a stable fuel supply is complex. To this end, oxygen-rich components are adsorbed during thermal decomposition, using the sorption properties of activated carbon associated with an increase in its specific surface area, specific volume, and pores, including a solution of oxidants in an aqueous medium, which significantly increases the combustion rate of carbon-containin g composite fuel.
References
(1). Ivleva AR, Kanarskij AV, Kazakov YaV (2014) Vestnik Kazanskogo tekhnologicheskogo universiteta 17(23):208-211.
(2). Efremova SV (2011) Physical and chemical bases and technology of thermal processing of RHs: [monograph]. Qazaq university, Almaty, Republic of Kazakhstan. P.149.
(3). Kinle H (1984) Active carbons and their industrial application. Chemistry, Leningrad branch, USSR. P.215.
(4). Eletsky PM (2009) Synthesis and study of carbon-silica nanocomposites, meso- and microporous carbon materials from high-ash biomass: thesis... Dissertation for the degree of candidate of chemical sciences, Novosibirsk, Russia. P.115.
(5). Ghosh R (2013) Journal of Chemical Engineering and Process Technology 4(4):156-162.
(6). Gupta VK, Ali I, Saini VK, Gerven TV, Bruggen BVD, Vandecasteele C (2005) Industrial and Engineering Chemistry Research 44(10)3655-3664. https://doi.org/10.1021/ie0500220
(7). Gupta VK, Jain CK, Ali I, Chandra S, Agarwal S (2002) Water Research 36(10):2483-2490. https://doi.org/10.1016/S0043-1354(01)00474-2
(8). Wen QB, Li C, Cai Z, Zhang W, Gao H, Chen L, Zeng G, Shu X, Zhao Y (2011) Bioresource Technology 102(2):942-947. https://doi.org/10.1016/j.biortech.2010.09.042
(9). Qada ENEl, Allen SJ, Walker GM (2006) Chemical Engineering Journal 124(1-3):103-110. https://doi.org/10.1016/j.cej.2006.08.015
(10). Sahu JN, Acharya JJ, Meikap BC (2010) Bioresource Technology 101(6):1974-1982. https://doi.org/10.1016/j.biortech.2009.10.031
(11). Guo S, Peng J, Li W, Yang K, Zhang L, Zhang S, Xia H (2009) Applied Surface Science 255(20):8443-8449. https://doi.org/10.1016/j.apsusc.2009.05.150
(12). Donald J, Xu C, Hashimoto H, Byambajav E, Ohtsuk Y (2010) Applied Catalysis A: General. 375(1):124-133. https://doi.org/10.1016/j.apcata.2009.12.030
(13). Shvets VV (2005) Collaboration to solve the problem of waste: II International Conference. INZHEK Publishing House, Kharkiv, Ukraine. P.337-340.
(14). Shumyatsky YuI (2009) Industrial adsorption processes. Kolos S, Moscow, Russia. P.183.
(15). Aworn A, Amphol A, Paitip T, Woranan N (2009) Colloids and Surfaces A: Physicochem and Eng. Asp. 333(1-3):19-25. https://doi.org/10.1016/j.colsurfa.2008.09.021
(16). Chang Ch-F, Chang Ch-Y, Tsai W-T (2000) Journal of Colloid and Interface Science. 232(1):45-49. https://doi.org/10.1006/jcis.2000.7171
(17). Fujisato K, Habu H, Hori K (2014) Sci. Tech. Energetic Materials 75:28-36.
(18). Mukhin VM, Tarasov AV, Klushin VN (2000) Active coals of Russia. Metallurgy, Moscow, Russia. P.352.