Тhe effect of heat treatment on the sorption characteristics of zeolite used in the process of water purification
DOI:
https://doi.org/10.18321/cpc21(3)173-179Keywords:
zeolite, modifi cation, waste water, thermal activationAbstract
The article considers the process of increasing the specific surface area and porosity of natural zeolite of the Shanghanai deposit of the Zhetysu region in high temperature and inertmedia. It was found that the sorption activity of the modifi ed zeolite material with respect to heavy metal ions reaches its maximum value at a temperature of 550 °C. It was determined by the method of SEM analysis that thermal activation leads to an increase in the porosity of the zeolite, and after the adsorption of heavy metal ions on the surface of the zeolite, signifi cant morphological changes are observed. The study of IR spectra of thermally activated zeolites has established that the sorption of heavy metal ions is an ion exchange involving functional groups in the zeolite structure, which is the reason for the change in the morphology of the sorbent. The experimental results show that natural zeolite is based on a microporous structure, ion exchange and adsorption capacity, this method of wastewater treatment is very effective and allows almost completely removing heavy metal ions and can be used for wastewater treatment.
References
(1). Caputo D, Pepe F (2007) Micropor. Mesopor. Mater 105(3):222-231. https://doi.org/10.1016/j.micromeso.2007.04.024
(2). Misaelides P (2011) Micropor. Mesopor. Mater 144(1-3):15-18. https://doi.org/10.1016/j.micromeso.2011.03.024
(3). Myrzalieva SK, Pratama GNIP, Khamidulla AG (2021) Complex Use of Mineral Resources 2(317):64-68. https://doi.org/10.31643/2021/6445.19
(4). Sanchez-Hernandez R, Padilla I, Lopez-Andres S, Lopez-Delgado A (2018) International Journal of Chemical Engineering. https://doi.org/10.1155/2018/1256197
(5). Kuldeyev E, Seitzhanova M, Tanirbergenova S, Tazhu K, Doszhanov E, Mansurov Z, Azat S, Nurlybaev R, Berndtsson R (2023) Water 15(12):2215. https://doi.org/10.3390/w15122215
(6). Bare SR, Knop-Gericke A, Teschner D, Havacker M, Blume R, Rocha T, Schlogl R, Chan ASY, Blackwell N, Charochak ME, Ter Veen R, Brongersma HH (2016) Surf. Sci. 648:376-382. https://doi.org/10.1016/j.susc.2015.10.048
(7). Mumpton FA (1999) Proc. Natl. Acad. Sci. U.S.A. 96(7):3463-3470. https://doi.org/10.1073/pnas.96.7.3463
(8). Li M, Zhu X, Zhu F, Ren G, Cao G, Song L (2011) Desalination 271(1-3):29-300. https://doi.org/10.1016/j.desal.2010.12.047
(9). Davila-Jimenez MM, Elizalde-Gonzalez MP, Mattusch J, Morgenstern P, Perez-Cruz MA, Reyes-Ortega Y, Wennrich R, Yee-Madeira H (2008) J. Colloid. Interf. Sci. 322:527-536. https://doi.org/10.1016/j.jcis.2008.03.042
(10). Kuldeyev EI, Orynbekov YeS, Mansurov ZA, Nurlybayev RE, Zhumadilova ZhO, Murzagulova AA (2023) Water 15(12):2231. https://doi.org/10.3390/w15122231