Influence of interactions of components in nickel-cobalt catalysts on their activity in methane decomposition

Authors

  • G.E. Ergazieva Institute of Combustion Problems, Bogenbay Batyr str. 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • M.M. Anissova Institute of Combustion Problems, Bogenbay Batyr str. 172, Almaty, Kazakhstan
  • N. Makaeva Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • J. Shaimerden Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc441

Keywords:

methane, decomposition, hydrogen, carbon, catalyst, nickel oxide, cobalt oxide.

Abstract

The activity of low-percentage monometallic and bimetallic catalysts supported on a γ-Al2O3 support in the decomposition of methane has been studied. It was determined that bimetallic (Ni-Co/γ-Al2O3) catalyst is more active than monometallic (Ni/γ-Al2O3, Co/γ-Al2O3). The highest methane conversion and the highest amount of filamentous carbon were observed on the bimetallic catalyst. A complex of methods of scanning electron microscopy, X-ray phase analysis, temperature- programmed reduction by hydrogen has established that the addition of cobalt oxide to the composition of Ni/γ-γ-Al2O3 leads to the formation of surface bimetallic Ni-Co alloys. The formation of alloys facilitates the reduction of the catalyst and provides an increase in the concentration of active centers. These changes have a positive effect on the activity of the bimetallic catalyst.

References

(1). Karimi S, Bibak F, Meshkani F, Rastegarpanah A, Deng J, Liu Y, Dai H (2021) International Journal of Hydrogen Energy 46(39):20435–20480. https://doi.org/10.1016/j.ijhydene.2021.03.160

(2). Torres D, Pinilla JL, Suelves I (2020) International Journal of Hydrogen Energy 45(38):19313–19323. https://doi.org/10.1016/j.ijhydene.2020.05.104

(3). Silva RRCM, Oliveira AH, Guarino ACPF, Toledo BB, Moura MBT, Oliveira BTM, Passos FB (2016) International Journal of Hydrogen Energy 41(16):6763–6772. https://doi.org/10.1016/j.ijhydene.2016.02.101

(4). Fan Z, Weng W, Zhou J, Gu D, Xiao W (2021) Journal of Energy Chemistry 58:415–430. https://doi.org/10.1016/j.jechem.2020.10.049

(5). Liu F, Xuan G, Ai L, Liu Q, Yang L (2021) Fuel Processing Technology 215:106745. https://doi.org/10.1016/j.fuproc.2021.106745

(6). Soloviev SO (2012) Cordierite Catalysts Catal Ind 4:1–10. https://doi.org/10.1134/S2070050412010114

(7). Syed Muhammad AF, Awad A, Saidur R, Masiran N, Salam A, Abdullah B (2018) International Journal of Hydrogen Energy 43(41):18713–18734. https://doi.org/10.1016/j.ijhydene.2018.08.091

(8). Makvandi S, Alavi SM (2011) Iranian Journal of Chemical Engineering 8(4):24–33.

(9). Qian JX, Chen TW, Enakonda LR, Liu D B, Mignani G, Basset JM, Zhou L (2020) International Journal of Hydrogen Energy 45(15):7981–8001. https://doi.org/10.1016/j.ijhydene.2020.01.052

(10). Ergazieva GE, Telbayeva MM, Popova AN, Ismagilov ZR, Dossumov K, Myltykbayeva LK, Dodonov VG, Sozinov SA, Niyazbayeva AI (2021) Chemical Papers 75:2765–2774. https://doi.org/10.1007/s11696-021-01516-y

(11). Takanabe K, Nagaoka K, Nariai K, Aika K (2005) Journal of Catalysis 232(2):268–275. https://doi.org/10.1016/j.jcat.2005.03.011

(12). Shao H, Kugler EL, Ma W, Dadyburjor DB (2005) Industrial & Engineering Chemistry Research 44:4914–4921. https://doi.org/10.1021/ie049186r

(13). Yergaziyeva GY, Makayeva N, Shaimerden Zh, Soloviev SO, Telbayeva ММ, Akkazin ЕА, Ahmetova F (2022) Bulletin of Chemical Reaction Engineering & Catalysis 17(1):1–12. https://doi.org/10.9767/bcrec.17.1.12174.1-12

(14). Wan C, Shi Z, Huang M, Pan J, Luo R, Li D, Jiang L (2020) International Journal of Hydrogen Energy 46(5):3833–3846. https://doi.org/10.1016/j.ijhydene.2020.10.186

(15). Dossumov K, Yergazieva GY, Myltykbaieva LK, Asanov NA (2016) Theoretical and Experimental Chemistry 52:119–122. https://doi.org/10.1007/s11237-016-9459-5

(16). Lisboa JS, Terra LE, Silva PRJ, Saitovitch H, Passos FB (2011) Fuel Processing Technology 92:2075–2082. https://doi.org/10.1016/j.fuproc.2011.06.011

(17). Reynoso AJ, Ayastuy JL, Iriarte-Velasco U, Gutierrez-Ortiz MA (2018) Applied Catalysis B:Environmental 239:86-101. https://doi.org/10.1016/j.apcatb.2018.08.001

(18). Ay H, Üner D (2015) Applied Catalysis B: Environmental 179:128–138. https://doi.org/10.1016/j.apcatb.2015.05.013

(19). Klissurski DG, Uzunova EL (1991) Chemistry of Materials 3:1060–1063. https://doi.org/10.1021/cm00018a021

(20). Fang YY, Wang XZ, Chen Y-q, Dai L-y (2020) Journal of Zhejiang University-SCIENCE A 21(1):74–84. https://doi.org/10.1631/jzus.A1900535

(21). Ashokkumar S, Ganesan V, Ramaswamy KK, Balasubramanian V (2018) Research on Chemical Intermediates 44:6703–6720. https://doi.org/10.1007/s11164-018-3517-7

(22). Li L, Lu P, Yao Y, Ji W (2012) Catalysis Communications 26:72–77. https://doi.org/10.1016/j.catcom.2012.05.005

Published

2021-10-12

How to Cite

Ergazieva, G., Anissova, M., Makaeva, N., & Shaimerden, J. (2021). Influence of interactions of components in nickel-cobalt catalysts on their activity in methane decomposition. Combustion and Plasma Chemistry, 19(3), 187–194. https://doi.org/10.18321/cpc441