Influence of an alkali additive on the mechanical strength of coal briquettes
DOI:
https://doi.org/10.18321/cpc470Keywords:
coal briquettes, sodium hydroxide, adhesive composition, combustion rate, combustion catalysts.Abstract
The purpose of this work was to study the effect of sodium hydroxide on the formation of the mechanical strength of coal briquettes based on brown coal subjected to low-temperature pyrolysis. Qualitative and quantitative analysis on the chromatographic complexes «Agilent 7890A/5975C» and «Chromos GC-1000» established the main mass loss of coal in the temperature range of 400-600оC and determined the composition of volatile components. A scheme for the formation of a binder based on caustic soda and wheat bran starch is proposed, the optimal concentration of the binder is determined, and the mechanism for the formation of the strength of coal briquettes is shown.
References
(1). Linnik VG, Minkina TM, Bauer TV, Saveliev AA, Mandzhieva SS (2020) Environmental Geochemistry and Health 42:4087–4100. https://doi.org/10.1007/s10653-019-00361-z
(2). Chai L, Liao X, Yang L, Yan X (2018) Applied Energy 231:951–958. https://doi.org/10.1016/j.apenergy.2018.09.178
(3). Guttikunda SK, Jawahar P (2014) Atmospheric Environment 92:449–460. https://doi.org/10.1016/j.atmosenv.2014.04.057
(4). Shahzad Baig K, Yousaf K (2017) Journal of Earth Science & Climatic Change 8(7):1–9. https://doi.org/10.4172/2157-7617.1000404
(5). Zhao Sh, Duan Y, Chen L, Li Y, Yao T, Liu Sh, Liu M, Lu J (2017) Environmental Pollution. 2017. Vol.226. P.404–411. https://doi.org/10.1016/j.envpol.2017.04.009
(6). Nikishanin MS, Zagrutdinov RSh, Senachin PK (2016) Polzunovskiy Bulletin [Polzunovskij vestnik] 1:88–95. (in Russian)
(7). Golovichev AI, Nikishanin MS, Magera VS, Zharkov SV (2006) Method for producing fuel briquettes [Sposob polucheniya toplivnyh briketov] Patent of the RF 2298028.
(8). Kouznetsov DL (2014) Composition and method for improvement in froth flotation. PCT Patent WO-2014/163769 A1.
(9). Demirbaş A. (2003) Energy Sources 25(7):713– 720. https://doi.org/10.1080/00908310390212372
(10). Zhang X, Xu D, Xu Zh, Cheng Q (2001) Fuel processing technology 71:185–196. https://doi.org/10.1016/S0378-3820(01)00179-5
(11). Rossi A (2009) Method and apparatus for carrying out nickel and hydrogen exothermal reactions. PCT Patent WO 2009/091850A1.
(12). Li Y, Xing X, Ma P, Zhang X, Wu Y, Huang L (2020) J. of thermal and calorimetry 139:489– 498. https://doi.org/10.1007/s10973-019-08278-6
(13). Song A, Zha F, Tang X, Chang Y (2019) Chemical Engineering & Processing: Process Intensification 143:107585. https://doi.org/10.1016/j.cep.2019.107585
(14). Chavda R, Mahanwar P (2018) International Journal of Coal Preparation and Utilization 41(10):749–766. https://doi.org/10.1080/19392699.2018.1536046
(15). Pinchukova KV, Mishurina OA, Chuprova LV (2015) Modern science-intensive technologies [Sovremennye naukoemkie tekhnologii] 11:18–21. (in Russian)
(16). Fangxian L, Shizong L, Youzhi C (2009) Journal of Thermal Analysis and Calorimetry 95(2):633–638. https://doi.org/10.1007/s10973-008-9124-x
(17). Yin K, Zhou YM, Yao QZ, Fang C, Zhang ZW (2012) Reaction Kinetics, Mechanisms and Catalysis 106(2):369–377. https://doi.org/10.1007/s11144-012-0444-2
(18). Euro-Asian council standardization (EASC), Metrology and Certification 25543-88. https:// easc.by/en
(19). Voigt J, Schmidt H, Hochbahn P, Feeser H (1989) Method for making stein-hall type of starch milk. Patent DK155611B Denmark, 989-09-18, Publication of DK155611C.
(20). Glushchenko IM (1990) Theoretical foundations of fossil fuel technology [Teoreticheskie osnovy tekhnologii goryuchih iskopaemyh] Metallurgy, Moscow, Russia. (in Russian)
(21). Kaiyrbekov ZhK, Emelyanova VS, Zhubanov KA, Myltykbaeva ZhK, Baizhomartov BB (2013) Theory and practice of coal processing [Teoriya i praktika pererabotki uglya] Publishing house «Bilim», Almaty, Kazakhstan. (in Russian)
(22). Ketegenov TA, Yushina TI, Kalugin SN, Kamunur K (2021) Gornyi journal 2:93–96. https://doi.org/10.17580/gzh.2021.02.12