Микроструктура и термические свойства сплава Al–Mg затвердевшего при высокой температуре в атмосфере аргона
DOI:
https://doi.org/10.18321/cpc406Ключевые слова:
Al-Mg сплав, высокотемпературный диффузионный способ связывания, микроструктура, быстрое затвердевание, фазовые превращенияАннотация
В этой работе исследованы фазообразование, микроструктура и термические свойства Al-Mg сплава затвердевшего при высокой температуре в атмосфере аргона. Максимальное образование однофазного сплава Al-Mg соотношением компонентов первичного алюминия и магния Al–50%, потока Mg и газового аргона определялось при температуре 750 оC. После затвердевания при давлениях 1 МПа и 2 МПа основными фазами являются β- и γ-фазы сплава Al-Mg, находящиеся в равновесном состоянии. Теплофизические свойства алюминиево-магниевого сплава были исследованы методом DTA-TG (Tплавление = 458.4 oC, Токисление = 568.4 и 616.9 oC окисление чистого Mg и чистого Al соответственно).
Библиографические ссылки
(1). Mourik PV, Maaswinkel NM, de Keijser THD, Mittemeijer EJ (1989) Ej. J Mater Sci 24:3779– 3786. https://doi.org/10.1007/BF02385770
(2). Jie JC, Zou CM, Brosh E, Wang HW, Wei ZJ, Li TJ (2013) J. Alloy. Compd 578:394–404. https://doi.org/10.1016/j.jallcom.2013.04.184
(3). Schoenitz M, Dreizin EL (2013) J. Mater. Res. 18:1827–2836. https://doi.org/10.1557/JMR.2003.0255
(4). Shih TS, Wang JH, Chong KZ (2004) Mater. Chem. Phys. 85:302–309. https://doi.org/10.1016/j.matchemphys.2004.01.036
(5). Palma AS, Iturbe-Garcia JL, López-Muñoz BE, Jiménez AS (2010) Int. J. Hydrogen Energ. 35:12120–12124. https://doi.org/10.1016/j.ijhydene.2009.09.073
(6). Rambabu P, Eswara Prasad N, Kutumbarao VV, Wanhill RJH (2016) Aerosp. Mater.Mater. Technol. 1:29–52. https://doi.org/10.1007/978-981-10-2134-3_2
(7). Yang Z, Li JP, Zhang JX, Lorimer GW, Robson J (2008) Acta Metallurgica Sinica. 21:313–328. https://doi.org/10.1016/S1006-7191(08)60054-X
(8). Walsh FC, Low CTJ, Wood RJK, Stevens KT, Archer J, Poeton AR., Ryder A (2009) Int. J. Surf. Eng. Coat. 87:122–135. https://doi.org/10.1179/174591908X372482
(9). Kamunur K, Jandosov JM, Аbdulkarimova RG, Hori K, Yelemessova ZhK (2017) Eurasian Chem.-Technol. J. 19:341–346. https://doi.org/10.18321/ectj682
(10). Kamunur K, Jandosov JM, Аbdulkarimova RG, Hori K, Mansurov Z (2017) Chemical Journal of Kazakhstan [Himicheskij Zhurnal Kazahstana] 4:215–224.
(11). Mohammed I, Santhosh K., Chakravarthy SR, Jayaganthan R, Sarathi R, Srinivasan A (2020) Nano Express 1:020007. https://doi.org/10.1088/2632-959X/aba22f
(12). Yao M, Chen L, Yu J, Peng J (2012) Pro. Eng. 45:567–573. https://doi.org/10.1016/j.proeng.2012.08.205
(13). Kim DY, Cheon SS, Suh JD. Int. J. Precis. Eng. Man. 19:1681–1688. https://doi.org/10.1007/s12541-018-0195-8
(14). Gubicza J, Kassem M, Ungár T (2002) Formation of nanocrystalline aluminum magnesium alloys by mechanical alloying. 3rd International Powder Metallurgy Conference Ankara, Turkey P.741–755.
(15). Zheng Y, Zhang S, Lü X, Wang Q, Zuo Y, Liu L (2012) Chinese J. Chem. Eng. 20:130– 139. https://doi.org/10.1016/S1004-9541(12)60372-3
(16). Chen MC, Kuo CW, Chang CM, Hsieh CC, Chang YY, Wu W (2007) Materials Transactions 48:2595–2598. https://doi.org/10.2320/matertrans.MD200718
(17). Yang SH, Yang FL, Liao CF, Li MZ, Wang X (2010) J. Rare Earths. 28:385–388. https://doi.org/10.1016/S1002-0721(10)60322-5
(18). El Abedin SZ, Giridhar P, Schwab P, Endres F (2010) Electrochemistry Communications 12:1084–1086. https://doi.org/10.1016/j.elecom.2010.05.034
(19). Shirzadi AA, Wallach ER (1997) Sci. Technol. Weld. Joi. 2:89–94. https://doi.org/10.1179/stw.1997.2.3.89
(20). Scudino S, Sakaliyska M, Surreddi K, Eckert J (2009) Journal of Physics: Conference Series 144:1–5. https://doi.org/10.1088/1742-6596/144/1/012019
(21). Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG (2008) Fuel 87:244–251. https://doi.org/10.1016/j.fuel.2007.04.022
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.