Physical and chemical characteristics and activity of nickel-modified cobalt-iron-containing catalysts in the reaction of dry reforming of methane
DOI:
https://doi.org/10.18321/cpc22(3)187-196Keywords:
greenhouse gas, methane, carbon dioxide, oxide catalysts, dry reforming of methaneAbstract
In the process of dry reforming of methane (DRM), the activity of low-percentage catalysts based on cobalt and iron oxides and their modification with nickel oxide was studied. It has been established that the addition of nickel oxide into the Fe2O3/γ-Al2O3 catalyst increases the degree of methane conversion from 14 to 89%, and also increases the yield of target reaction products H2 to 43.0 vol.%, CO to 46.1 vol.% at 850 °C. On a Co3О4-NiО/γ-Al2O3 catalyst at 850 °C, methane conversion reaches to 88.1%, the yield of H2 and CO is 44.8%. TPR-H2 analyzes showed that the introduction of nickel oxide into Fe2O3/γ-Al2O3 composition, in contrast to the Co3O4/γ-Al2O3 catalyst, the temperature peaks of Fe2O3-NiО/γ-Al2O3, reduction shift towards lower temperatures and weaken the interaction of metals with the support - γ-Al2O3 and thereby the amount of active reduced particles of iron and nickel oxides increases, which ensures good catalytic activity of Fe2O3-NiО/γ-Al2O3. According to the XRD results, spinel-like form - NiFe2O4, NiAl2O4 and CoAl2O4, also phase as Fe2O3 were obtained on the Fe2O3-NiО/γ-Al2O3 catalyst. This indicates that the developed catalysts form new phases that are active at high temperatures to produce synthesis gas in reduction-oxidation processes during the DRM reaction.
References
(1). Babalola AO, Olusegun ST, Samuel ES, Victor OO (2023) Materials Today Communications 36: 1-14. https://doi.org/10.1016/j.mtcomm.2023.106802
(2). Zhu X, Huo P, Zhang YP, Cheng DG, Liu CJ (2008) Appl. Catal. B: Environ 81: 132-140. https://doi.org/10.1016/j.cattod.2015.02.007
(3). Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S (2013) 117: 8120-8130. https://doi.org/10.9767/bcrec.17.1.12501.88-102
(4). Rostrup-Nielsen JR, Sehested J, Norskov JR (2002) Adv. Catal 47: 65-139. https://doi.org/10.1016/S0360-0564(02)47006-X
(5). Pechimuthu NA, Pant KK, Dhingra SC, Bhalla R (2006) 45: 7435-7443. https://doi.org/10.1021/ie060661q
(6). Khani Y, Shariatinia Z, Bahadoran F (2016) 299: 353-366. https://doi.org/10.1016/j.cej.2016.04.108
(7). Sumrunronnasak S, Tantayanon S, Kiatgamolchai S and Sukonket T (2016) Int. J. Hydrogen Ener 41: 2621-2630. https://doi.org/10.1016/j.ijhydene.2015.10.129
(8). Charisiou ND, Siakavelas G, Papageridis KN, Baklavaridis A, Tzounis L, Avraam DG, Goula MA (2016) J. Nat. Gas Sci. Eng 31: 164-183. https://doi.org/10.1016/j.ijhydene.2016.11.196
(9). Daniel GA, Diana GA, Gómez-Cortés A, Díaz G (2021) Catal. Today 360: 46-56. https://doi.org/10.1016/j.cattod.2019.06.018
(10). Androulakis A, Yentekakis IV, Panagiotopoulou P (2023) Int. J. Hydrogen Ener 48: 33886-33902. https://doi.org/10.1016/j.ijhydene.2023.03.114
(11). Mekkering MJ, Biemolt J, Graaf Jeen de, Lin Yi-An, Leest NP, Troglia A, Bliem R, Bas de B, Rothenberg G, Yan N (2023) Catal Sci Technol. 13: 2255-2260. https://doi.org/10.1039/D2CY02126A
(12). Dossumov K, Ergazieva GE, Ermagambet BT, Telbayeva MM, Mambetova MM, Myltykbayeva LK, Kassenova ZM (2020) Chemical Papers 74: 373-388. https://doi.org/10.1007/s11696-019-00921-8
(13). Dossumov K, Ergazieva GE, Myltykbaeva L K, Telbaeva MM, Batyrbaev AT (2019) Theoretical and Experimental Chemistry 55: 124-128. https://doi.org/10.1007/s11237-019-09605-6
(14). Dossumov K, Churina DKh, Ergazieva GE, Ermagambet BT (2019) Oil and Gas 5: 49-73.
(15). Yergaziyeva GY, Kutelia E, Dossumov K, Gventsadze D, Jalabadze N, Dzigrashvili T, Mambetova MM, Anissova MM, Nadaraia L, Tsurtsumia O, Eristavi B (2023) Combustion and plasma chemistry 21: 89-97. https://doi.org/10.18321/cpc21(2)89-97
(16). Al-Fatesh AS, Ashraf A, Ahmed AI, Wasim UKh, Soliman MA, AL-Otaibi RL, Fakeeha AH (2016) Catalysts 6: 1-15. https://doi.org/10.3390/catal6030040
(17). Kim TY, Jo SB, Woo JH, Lee JH, Dhanusuraman R, Lee SC, Kim JC (2021) Catalysts 11: 105. https://doi.org/10.3390/catal11010105
(18). Liu Q, Wang J, An K, Zhang S, Liu G, Liu Y (2020) Energy Technol 8: 200-205. https://doi.org/10.1002/ente.202000205
(19). Hwang S (2013) Journal of Industrial and Engineering Chemistry 19: 698-703. https://doi.org/10.1016/j.jiec.2012.10.007
(20). Zeng Sh, Zhang L, Zhang X, Wang Y, Pan H, Su H (2012) Int. J. Hydrogen Energy 37: 9994-10001. https://doi.org/10.1016/j.ijhydene.2012.04.014
(21). Yahi N, Menad S, Rodríguez-Ramos I (2015) Green Process Synth 4: 479-486. https://doi.org/10.1515/gps-2015-0061
(22). Tsoukalou A, Imtiaz Q, Kim SM, Abdala PM, Yoon S, Müller CR (2016) Journal of Catalysis 343: 208-214. https://doi.org/10.1016/j.jcat.2016.03.018
(23). Dhillon GS (2021) Doctoral Dissertations: 178. https://scholars.unh.edu/dissertation
(24). Manabayeva AM, Mäki-Arvela P, Vajglová Z, Martinéz-Klimov M, Tirri T, Baizhumanova TS, Grigor’eva V.P, Zhumabek M, Aubakirov YA, Simakova IL, Murzin DYu, Tungatarovа SA (2023) Ind. Eng. Chem. Res 62: 11439-11455. https://doi.org/10.1021/acs.iecr.3c00272
(25). Myltykbayeva LK, Ergazieva GE, Telbayeva MM, Ismagilov ZR, Dossumov K, Popova АN, Sozynov SА, Turgumbayeva RH, Hitsova LM (2020) Eurasian Chem.-Technol. J 22: 187-195. https://doi.org/10.18321/ectj978
(26). Al-Fatesh A, Abu-Dahrieh J, Atia H, Armbruster U, Ibrahim AA, Khan W, Abasaeed A, Fakeeha AH (2019) Int. J. Hydrogen Energy 44: 21546-21558. https://doi.org/10.1016/j.ijhydene.2019.06.085
(27). Yung MM, Holmgreen EM, Ozkan US (2007) J. Catal. 247: 356-367. https://doi.org/10.1016/j.jcat.2007.02.020.
(28). Dossumov K, Ergazieva GЕ, Ermagambet BT, Myltykbaeva LK, Telbaeva MM, Mironenko AV, Mambetova MM, Kasenova G (2020) Russian Journal of Physical Chemistry A 94: 880-882. https://doi.org/10.1134/S0036024420040020
(29). Ali S, Mohd Zabidi N, Subbarao D (2011) Chem. Cent. J. 5: 68. https://doi.org/10.1186/1752-153X-5-68
(30). Pengpanich S, Meeyoo V, Rirksomboon T (2004) Catal. Today 93: 95-105. https://doi.org/10.1016/j.cattod.2004.06.079
(31). Savostyanov AP, Yakovenko RE, Narochny GB, Bakun VG, Sulima SI, Yakuba ES, Mitchenko SA (2017) Kinetics and Catalysis 58: 1-11. https://doi.org/10.1134/S0023158417010062
(32). Kim T-Y, Jo S, Lee Y, Kang S-H, Kim J-W, Lee S-Ch, Kim J-C (2021) Catalysts 11: 697. https://doi.org/10.3390/catal11060697.
(33). Zhang J, Jin L, Li Y, Hu H (2013) Int. J. Hydrogen Energy 38: 3937-3947. https://doi.org/10.1016/j.ijhydene.2013.01.105
(34). Wang L, Li D, Koike M, Koso S, Nakagawa Y, Xu Y, Tomishige K (2011) Appl. Catal. A Gen 392: 248-255. https://doi.org/10.1016/j.apcata.2010.11.013
(35). Giecko G, Borowiecki T, Gac W, Kruk J (2008) Catal. Today 137: 403-409. https://doi.org/10.1016/j.cattod.2008.02.008
(36). Meng F, Zhong P, Li Zh, Cui X, Zheng H (2014) Journal of Chemistry 58: 7. https://doi.org/10.1155/2014/534842
(37). Li T, Wang H, Yang Y, Xiang H, Li Y (2014) Fuel Process.Technol 118: 117-124. https://doi.org/10.1016/j.fuproc.2013.08.015
(38). Zhou L, Enakonda LR, Harb M, Saih Y, Aguilar-Tapia A, Ould-Chikh S, Hazemann J, Li J, Wei N, Gary D, Del-Gallo P, Jean-Marie (2017) Applied Catalysis B: Environmental 208: 44-59. https://doi.org/10.1016/j.apcatb.2017.02.052
(39). Gonzalez JJ, Da Costa-Serra JF, Chica A (2020) Int J Hydrogen Energy 45: 20568-20581. https://doi.org/10.1016/j.ijhydene.2020.02.042
(40). Yergaziyeva G, Makayeva N, Anissova M, Dossumov K, Mambetova M, Shaimerden Z, Niyazbaeva A, Akkazin E (2022) Eurasian Chem. Technol. J 24: 221-227. https://doi.org/10.18321/ectj1435
(41). Wang N, Sun ZJ, Wang YZ, Gao XQ, Zhao YX (2011) Journal of Fuel Chemistry and Technology 39: 219-223. https://doi.org/10.1155/2014/534842
(42). Soleymani M, Edrissi M (2016) Bulletin of Materials Science 39: 487-490. https://doi.org/10.1007/s12034-016-1164-4
(43). Grabchenko M, Pantaleo G, Puleo F, Kharlamova TS, Zaikovskii VI, Vodyanki O, Liotta LF (2021) Catal. Today 382: 71-81. https://doi.org/10.1016/j.cattod.2021.07.012