Influence of mechanochemical activation on the composition, properties and structure of shungite rocks
Keywords:
hungite, elemental composition, mechanochemical activation, carbon, silicon, grinding, sorption, dispersion.Abstract
The paper studies the effect of mechanochemical activation on the composition, properties and structure of shungite rocks of the Koksu deposit. The use of nanostructured shungite powder in sorbents can lead to an improvement in their sorption properties. As a result of mechanochemical activation in the samples of shungite rocks of carbonate and shale origin, the mass fraction of carbon decreases, and the mass fraction of silicon increases. The composition of the rocks also increases the content of oxygen, aluminum and iron, which contributes to the improvement of the sorption properties of shungite. Mechanochemical activation led to an increase in the specific surface area, specific volume, and pore size of the samples. As a result of the mechanochemical activation of shungite samples, the surface structure of the material changes, and carbon materials with a more developed surface structure and increased porosity are obtained.
References
(1). Bondarenko SV, Tarasevich YI, Polyakov VE et al. (2008). Adsorption Science & Technology 26:3-13. https://doi.org/10.1260/026361708786035413
(2). Mussina USh (2013). SPbGTI(TU) news [Izvestia SPbGTI (TU)] 19:39-41. (In Russian)
(3). Molchanov VI, Yussupov TS (1981). Physical and chemical properties of finely dispersed minerals [Fizicheskie i himicheskie svoistva tonkodispergirovannyh mineralov]. Мoscow: Nedra. – 160 p.
(4). Polunina IA, Vysotskii VV, Senchikhin IN et al. (2017). Colloid Journal 79:244-249. https://doi.org/10.1134/S1061933X17020107
(5). Eisymont Y, Auchynnikau Y, Avdeychik S, Ikramov A, Grigorieva T (2015). Materials Science. Non-Equilibrium Phase Transformations 1:36-41.
(6). Yusupova SS, Myzernaya MA, Khairullina AA, Kartygin AV (2020). IOP Conf. Series: Materials Science and Engineering 775. https://doi.org/10.1088/1757-899X/775/1/012128
(7). Obradovic´ N, Gigov M, Dordevic´ A, Kern F, Dmitrovic´ S, Matovic´ B, Dordevic´A, Tshantshapanyan A, Vlahovic´ B, Petrovic´ P, Pavlovic V (2019). Processing and Application of Ceramics 13:89-97. https://doi.org/10.2298/ PAC1901089O
(8). Moshnikov IA, Kovalevski VV (2018). Materials Today: Proceedings 5:25971-25975. https://doi.org/10.1016/j.matpr.2018.08.014
(9). Kovalevskii SV, Moshnikov IA, Kovalevski VV (2018). Nanosystems: Physics, Chemistry, Mathematics 9:468-472. https://doi.org/10.17586/2220-8054-2018-9-4-468-472
(10). Kazankapova MK, Nauryzbaev MK, Efremov SA, Ermagambet BT, Nurgalieva NU, Nechipurenko SV (2019). Solid Fuel Chemistry 53:242-248. https://doi.org/10.3103/S0361521919040086
(11). Moiseevskaya GV, Shpakov MYu, Razdyakonova TN et al. (2012). Rubber [Kauchuk i rezina] 6:14-16. (In Russian)
(12). Igumenova TI et al. (2008). Materials of International Forum on nanotechnology. Moscow, Russia. Vol. 3. P. 158. (In Russian)