Creation of a hydrophobic sponge based on nanostructured soot

Authors

  • M. Nazhipkyzy Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan; Satbayev University, 22a Satpayev str., Almaty, Kazakhstan
  • А. Nurgain Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc21(4)265-271

Keywords:

synthesis, soot, hydrophobic sponge, contact angle, adsorption.

Abstract

The carbon-coated hydrophobic sponge is widely used in a number of industries. One of the main such applications is the effective removal of various water pollutants, such as oil, through absorption. In this work, a flexible, porous, and hydrophilic melamine sponge is coated with soot, which has superhydrophobic properties, resulting from incomplete combustion of a propane-butane mixture. Samples of superhydrophobic soot and sponges with hydrophobic properties are examined using methods, such as, SEM, EDAX, BET. The created hydrophobic sponge does not absorb water, but at the same time absorbs oil products well. The wetting angle of the surface of the created sponge is in the range of 145-150º and, with selective separation of oil from water, shows the absorption of 24 g of oil per 1 g of sponge. As a result of research, it was found that a sponge coated with soot retains its sorption capacity after 20 cycles of operation, with the total amount of sorbed oil being about 95.5%.Thus, the results obtained demonstrate the effectiveness of using a melamine sponge coated with hydrophobic soot.

References

(1). Wang Y, Xue J, Wang Q, Chen Q, & Ding J (2013) ACS Applied Materials & Interfaces. 5(8):3370–3381. https://doi.org/10.1021/am400429q

(2). Barbier EB et al. (2014) Ecology: Protect the deep sea. Nat. News 505:475–477. https://doi.org/10.1038/505475a

(3). Ferreira-Leitão VS et al. (2017) Catalysts 7(1):1–34. https://doi.org/10.3390/catal7010009

(4). Kujawinski EB et al. (2011) Environ. Sci. Technol. 45:1298–1306. https://doi.org/10.1021/es103838p

(5). Pagnucco R, Phillips M (2018) J. Environ. Manag. 225:10–16. https://doi.org/10.1016/j.jenvman.2018.07.094

(6). Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Angew. Chem. Int. Edit. 52:1986–1989. https://doi.org/10.1002/anie.201207969

(7). Zhang T, Li Z, Lü Y, Liu Y, Yang D, Li Q, Qiu F (2019) Chinese Journal of Chemical Engineering 27(6):1282–1295. https://doi.org/10.1016/j.cjche.2018.09.001

(8). Lee CH, Tiwari B, Zhang D, Yap YK (2017) Environmental Science: Nano 4(3):514–525. https://doi.org/10.1039/C6EN00505E

(9). Bayat A, Aghamiri SF, Moheb A & Vakili-Nezhaad GR (2005) Chem. Eng. Technol. 28:1525–1528. https://doi.org/10.1002/ceat.200407083

(10). Tejero M et al. (2017) Desalin. Water Treat. 100:21–28. https://doi.org/10.1016/j.ejpe.2011.06.002

(11). Wang T, Bao Y, Gao Z, Wu Y & Wu L (2019) Prog. Organ. Coat. 132:275–282. https://doi.org/10.1016/j.porgcoat.2019.03.051

(12). Wang S, Li M & Lu Q (2010) ACS Appl. Mater. Interfaces 2:677–683. https://doi.org/10.1021/am900704u

(13). Xiaotao Z et al. (2014) J. Colloid Interface Sci. 432:105–108. https://doi.org/10.1016/j.jcis.2014.06.056

(14). Kim H, Han S, Kim J, Seo HO, Kim YS (2018) Curr. Appl. Phys. 18:369–376. https://doi.org/10.1016/j.cap.2018.01.017

(15). Si Y et al. (2015) ACS Nano 9:3791–3799. https://doi.org/10.1021/nn506633b

(16). Piperopoulos E et al. (2019) J. Appl. Polym. Sci. 136:47374. https://doi.org/10.1002/app.47374

(17). Zhou L, Xu Z (2020) J. Hazard. Mater. 388:121804. https://doi.org/10.1016/j.jhazmat.2019.121804

(18). Zhu Q, Pan Q, Liu F (2011) J. Phys. Chem. C 115:17464–17470. https://doi.org/10.1021/jp2043027

(19). Demirel G, Aygül E (2019) Colloids Surf. A Physicochem. Eng. Asp. 577:613–621. https://doi.org/10.1016/j.colsurfa.2019.05.081

(20). Ruan C, Ai K, Li X & Lu L (2014) Angew. Chem. Int. Edit. 53:5556–5560. https://doi.org/10.1002/anie.201400775

(21). Mansurov ZA, Nazhipkyzy M, Lesbayev BT, PrikhodkoNG, Auyelkhankyzy M, Puri IK (2012) Eurasian Chemico-Tecnological Journal. 14(1):19–23. https://doi.org/10.4028/www.scientific.net/MSF.886.32

(22). Gao Y, Zhou YS, Xiong W, Wang M, Fan L, Rabiee-Golgir H, Jiang L, Hou W, Huang X, Jiang L (2014) ACS Applied Materials & Interfaces 6(8):5924–5929. https://doi.org/10.1039/C4RA10910D

(23). Beshkar F, Khojasteh H, Salavati-Niasari M (2017) Journal of Colloid and Interface Science 497:57–65. https://doi.org/10.1016/j.jcis.2017.02.016

(24). Nazhipkyzy M, Nurgain A, Florent M, Policicchio A, Bandosz TJ (2019) Journal of Environmental Chemical Engineering 7(3):103074. https://doi.org/10.1016/j.jece.2019.103074

(25). Liu S, Xu Q, Latthe SS, Gurav AB, Xing R (2015) Rsc. Advances 5(84):68293–68298. https://doi.org/10.1039/C5RA12301A

(26). Ouf FX, Bourrous S, Vallieres C, Yon J, Lintis L (2019) J. Aerosol Sci. Elsevier Ltd. 137:105436. https://doi.org/10.1016/j.jaerosci.2019.105436

(27). Lee W, Kim HV, Choi JH, Panomsuwan G, Lee YC, Rho BS, Kang J (2018) Sci. Rep. Springer US. 1-11. https://doi.org/10.1007/s10934-012-9599-5

Published

2023-12-26

How to Cite

Nazhipkyzy, M., & Nurgain А. (2023). Creation of a hydrophobic sponge based on nanostructured soot. Combustion and Plasma Chemistry, 21(4), 265–271. https://doi.org/10.18321/cpc21(4)265-271

Most read articles by the same author(s)