SYNTHESIS OF CARBON NANOSTRUCTURES ON COPPER FILM BY THERMAL CVD
Keywords:
термическое химическое осаждение, углеродные наноструктуры, сканирующая электронная микроскопия, медная пленка, комбинационное рассеяние света.Abstract
In this work are presented results of experiments on the synthesis of carbon nanostructures by the method of thermal chemical vapor deposition using copper films as catalysts. The effect of temperature and pressure on the nucleation and stable growth of carbon nanostructures were studied. To determine the optimal conditions for the synthesis, experiments were conducted at different temperatures (200-700 °C) and pressures (100-500 mbar). Experiments have shown that the lower temperature limit for stable growth of carbon nanostructures is 225 °C at pressure of 300 mbar. The morphology of obtained samples was investigated by means of ultrahigh resolution scanning electron microscopy. Likewise, obtained carbon nanostructures were investigated by Raman spectroscopy. Samples showed peaks D and G inherent carbon materials. Furthermore, peaks are present at 1428 cm-1 which correspond to the CH3 group.
References
(1) Andrea Szabó, Caterina Perri, Anita Csató, Girolamo Giordano, Danilo Vuono and János B. Nagy. Synthesis Methods of Carbon Nanotubes and Related Materials. Materials 2010, 3, 3092-3140. https://doi.org/10.3390/ma3053092
(2) Seo, J.W.; Magrez, A.; Milas, M.; Lee, K.; Lukovac, V.; Forro, L. Catalytically grown carbon nanotubes: From synthesis to toxicity. J. Phys. D: Appl. Phys. 2007, 40, 10-120. https://doi.org/10.1088/0022-3727/40/6/R01
(3) Rajesh Purohit et al. / Procedia Materials Science 6 (2014), 716- 728. https://doi.org/10.1016/j.mspro.2014.07.088
(4) Буранова Ю.С. Физика, электроника, нанотехнологии // Труды МФТИ. – 2011. – Том 3. – № 3. – C. 30-41.
(5) С.С. Букалов, Л.А. Михалыцин, Я.В. Зубавичус, Л. А. Лейтес, Ю.Н. Новиков. Исследование строения графитов и некоторых других sp2 углеродных материалов методами микро-спектроскопии КР и рентгеновской дифрактометрии. Рос. Хим. ж. (Ж. Рос. Хим. об-ва им. Д.И. Менделеева), 2006, т. L, №1.
(6) Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects // Solid State Communications.– 2007. – V.143. – P.47-57. https://doi.org/10.1016/j.ssc.2007.03.052
(7) Keith B. Dillon, Royal Society of Chemistry (Great Britain), David W.H. Rankin. Spectroscopic Properties of Inorganic and Organometallic Compounds. – 2014. p. 311.
(8) Andrea Carlo Ferrari and John Robertson. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon and nanodiamond. Phil. Trans. R. Soc. Lond. A (2004) 362, 2477-2512. https://doi.org/10.1098/rsta.2004.1452
(9) Thermal chemical vapor deposition of layered aligned carbon-nanotube films separated by graphite layers. Bo Zeng, Min Gao, Shenghua Liu, Taisong Pan, Zhenlong Huang, and Yuan Lin. Phys. Status Solidi A 210, No. 6, 1128-1132 (2013). https://doi.org/10.1002/pssa.201228579
(10) Characterization of carbon nanotubes by Raman spectroscopy. S. Costa, E. Borowiakpalen, M. Kruszyńska, A. Bachmatiuk, R.J. Kaleńczuk. Materials Science-Poland, Vol. 26, No. 2, 2008.