COMPARATIVE STUDY the ACTIVITY in DRY REFORMING of METHANE of BIOXIDE NiO-Co3O4 and NiO-Fe2O3 SYSTEMS SUPPORTED on the GRANULATED NATURAL DIATOMITE

Authors

  • G.Y. Yergaziyeva Institute of Combustion Problems, Bogenbai batyr str.,172, Almaty, 050012 Kazakhstan
  • E. Kutelia Georgian Technical University, Kostova str.,77, Tbilisi, 0175, Georgiа
  • K. Dossumov Institute of Combustion Problems, Bogenbai batyr str.,172, Almaty, 050012 Kazakhstan
  • D. Gventsadze Georgian Technical University, Kostova str.,77, Tbilisi, 0175, Georgiа
  • N. Jalabadze Georgian Technical University, Kostova str.,77, Tbilisi, 0175, Georgiа
  • T. Dzigrashvili Georgian Technical University, Kostova str.,77, Tbilisi, 0175, Georgiа
  • M.M. Mambetova Institute of Combustion Problems, Bogenbai batyr str.,172, Almaty, 050012 Kazakhstan
  • M.M. Anissova Institute of Combustion Problems, Bogenbai batyr str.,172, Almaty, 050012 Kazakhstan
  • L. Nadaraia Georgian Technical University, Kostova str.,77, Tbilisi, 0175, Georgiа
  • O. Tsurtsumia Georgian Technical University, Kostova str.,77, Tbilisi, 0175, Georgiа
  • B. Eristavi Georgian Technical University, Kostova str.,77, Tbilisi, 0175, Georgiа

DOI:

https://doi.org/10.18321/cpc21(2)89-97

Keywords:

methane, carbon dioxide, reforming, synthesis gas, oxide catalyst, support, natural diatomite

Abstract

In this work, catalytic systems NiO-Co3O4 and NiO-Fe2O3 bioxide supported on the granulated natural diatomite from the Georgia deposit were investigated as catalysts for the dry reforming of methane. The results showed that the NiO-Co3O4/D catalyst is more active and stable than NiO-Fe2O3/D. At the reaction temperature 850 oC the conversion of methane on the NiO-Co3O4/D catalyst was 77%, whereas on the NiO-Fe2O3/D – 42%. The activity of the NiO-Co3O4/D catalyst in the reaction is probably due to the high dispersity of the catalyst particles. The results of SEM-EDX, XRD, and AES showed that cobalt oxide in the composition of NiO-Co3O4/D is in the form of nanoparticles with sizes much smaller than the sensitivity threshold of X-ray diffraction analysis (<100Å).

References

(1). Pizzolitto C, Pupulin E, Menegazzo F, Ghedini E, Di Michele A, Mattarelli M, Signoretto M (2019) Int J Hydrog Energy 44:28065-28076. https://doi.org/10.1016/j.ijhydene.2019.09.050

(2). Shang Z, Li S, Li L, Liu G, Liang X (2017) Appl Catal B: Environ 201:302-309. https://doi.org/10.1016/j.apcatb.2016.08.019

(3). Barroso-Quiroga MM, Castro-Luna AE (2010) Int J Hydrog Energy 35(11):6052-6056. https://doi.org/10.1016/j.ijhydene.2009.12.073

(4). Wu L, Xie X, Ren H, Gao X (2021) Mater Tod: Proc 42:153-160. https://doi.org/10.1016/j.matpr.2020.10.697

(5). Ranjekar AM, Yadav GD (2021) J Indian Chem Soc 98(1):100002. https://doi.org/10.1016/j.jics.2021.100002

(6). Abdulrasheed A, Jalil AA, Gambo Y, Ibrahim M, Hambali HU, Shahul Hamid MY (2019) Renew Sustain Energy Rev 108:175-193. https://doi.org/10.1016/j.rser.2019.03.054

(7). Pakhare D, Spivey J (2014) Chem Soc Rev 43(22):7813-7837. https://doi.org/10.1039/C3CS60395D

(8). Li B, Yuan X, Li B, Wang X (2021) Fuel 301:121027. https://doi.org/10.1016/j.fuel.2021.121027

(9). Abdel Karim Aramouni N, Zeaiter J, Kwapinski W, Leahy JJ, Ahmad MN (2021) J CO2 Util 44:101411. https://doi.org/10.1016/j.jcou.2020.101411

(10). Leba A, Yıldırım R (2020) Int J Hydrog Energy 45:4268-4283. https://doi.org/10.1016/j.ijhydene.2019.12.020

(11). Taherian Z, Yousefpour M, Tajally M, Khoshandam B (2017) Micropor Mesopor Mat 251:9-18. https://doi.org/10.1016/j.micromeso.2017.05.027

(12). Yu M, Zhu YA, Lu Y, Tong G, Zhu K, Zhou X (2015) Appl Catal B: Environ 165:43-56. https://doi.org/10.1016/j.apcatb.2014.09.066

(13). Al-Fatish ASA, Ibrahim AA, Fakeeha AH, Soliman MA, Siddiqui MRH, Abasaeed AE (2009) Appl Catal А Gen 364:150-155. https://doi.org/10.1016/j.apcata.2009.05.043

(14). Lian Z, Olanrele SO, Si CW, Yang M, Li B (2020) J Phys Chem C 124:5118-5124. https://doi.org/10.1021/acs.jpcc.9b09856

(15). Rouibah K, Barama A, Benrabaa R, Guerrero-Caballero J, Kane T, Vannier RN, Löfberg A (2017) Int J Hydrog Energy 42(50):29725-29734. https://doi.org/10.1016/j.ijhydene.2017.10.049

(16). Zhang J, Wang H, Dalai AK (2007) J Catal 249:300-310. https://doi.org/10.1016/j.jcat.2007.05.004

(17). Khan WU, Fakeeha AH, Al-Fatesh AS, Ibrahim AA, Abasaeed AE (2016) Int J Hydrog Energy 41:976- 983. https://doi.org/10.1016/j.ijhydene.2015.10.112

(18). Kang D, Lim HS., Lee M, Lee JW (2018) Appl Energy 211:174-186. https://doi.org/10.1016/j.apenergy.2017.11.018

(19). Jin B, Li S, Liang X (2021) Fuel 284:119082. https://doi.org/10.1016/j.fuel.2020.119082

(20). Ramezani Y, Meshkani F, Rezaei M (2018) J Chem Sci 130(1):1-11. https://doi.org/10.1007/s12039-017-1410-3

(21). Bakhtiari K, Kootenaei AS, Maghsoodi S, Azizi S, Tabatabaei Ghomsheh SM (2022) Ceram Int 48:37394-37402. https://doi.org/10.1016/j.ceramint.2022.09.062

(22). Medeiros RLBA, Figueredo GP, Macedo HP, Oliveira ASA, Rabelo-Neto RC, Melo DMA, Melo MAF (2020) Fuel 287:119511. https://doi.org/10.1016/j.fuel.2020.119511

(23). Ekeoma BC, Yusuf M, Johari K, Abdullah B (2022) Int J Hydrog Energy 47:41596-41620. https://doi.org/10.1016/j.ijhydene.2022.05.297

(24). Xin J, Cui H, Cheng Z, Zhou Z (2018) Appl Catal A Gen 554:95-104. https://doi.org/10.1016/j.apcata.2018.01.033

(25). Xia D, Chen Y, Li C, Liu C, Zhou G (2018) Int J Hydrog Energy 43(45):20488-20499. https://doi.org/10.1016/j.ijhydene.2018.09.059

(26). Jabbour K, El Hassan N, Davidson A, Massiani P, Casale S (2015) J Chem Eng 264:351-358. https://doi.org/10.1016/j.cej.2014.11.109

(27). Ergazieva GE, Telbayeva MM, Popova AN, Ismagilov ZR, Dossumov K, Myltykbayeva LK, Niyazbayeva AI (2021) Chem Pap 75(6):2765-2774. https://doi.org/10.1007/s11696-021-01516-y

(28). Kutelia E, Dossumov K, Gventsadze D, Yergaziyeva G, Dzigrashvili T, Mambetova M, Jalabadze N (2021) GEN 2:56-62. https://doi:10.13140/RG.2.2.30805.96483

(29). Rabelo-Neto RC, Sales HBE, Inocˆencio CVM, Varga E, Oszko A, Erdohelyi A, Noronha FB, Mattos LV (2018) Appl Catal B: Environ 221:349-361. https://doi.org/10.1016/j.apcatb.2017.09.022

(30). Wu H, Pantaleo G, La Parola V, Venezia AM, Collard X, Aprile C, Liotta L (2014) Appl Catal B: Environ 156-157:350-361. https://doi.org/10.1016/j.apcatb.2014.03.018

Downloads

Published

2023-08-25

How to Cite

Yergaziyeva, G., Kutelia, E., Dossumov, K., Gventsadze, D., Jalabadze, N., Dzigrashvili, T., Mambetova, M., Anissova, M., Nadaraia, L., Tsurtsumia, O., & Eristavi, B. (2023). COMPARATIVE STUDY the ACTIVITY in DRY REFORMING of METHANE of BIOXIDE NiO-Co3O4 and NiO-Fe2O3 SYSTEMS SUPPORTED on the GRANULATED NATURAL DIATOMITE. Combustion and Plasma Chemistry, 21(2), 89–97. https://doi.org/10.18321/cpc21(2)89-97

Most read articles by the same author(s)