Multilayer Graphene Derived from Biowaste/ SrTiO3 as Effective Photocatalytic System
DOI:
https://doi.org/10.18321/cpc21(2)71-80Keywords:
фотокатализатор; расщепление воды; графен; получение водородаAbstract
The photoelectrochemical properties of photocatalysts including SrTiO3/multilayer graphene composite obtained using the electrospinning method were studied. Graphene obtained from rice husk and walnut shells was used as a co-catalyst for hydrogen (H2) production by water decomposition. This was the first time it was used in a photocatalytic system. The results of the study showed that the presence of multiple layers of graphene reduces the band gap width of the photocatalytic system and contributes to the effective separation of photoinduced charges.The material consisting of multilayer graphene synthesized from biowaste and SrTiO3 showed a higher rate of hydrogen release compared to pure SrTiO3. The results can be used to develop new and effective photocatalysts based on materials derived from biowaste with improved properties for the separation of water.
References
(1). Y. Li, S.C.E. Tsang, Materials Today Sustainability. 9 (2020) 100032. https://doi.org/10.1016/j.mtsust.2020.100032
(2). Y. Zhao, S. Zhang, R. Shi, G.I.N. Waterhouse, J. Tang, T. Zhang, Materials Today. 34 (2020) 78–91. https://doi.org/10.1016/j.mattod.2019.10.022
(3). R. Kavitha, P.M. Nithya, S. Girish Kumar, Applied Surface Science. 508 (2020) 145142. https://doi.org/10.1016/j.apsusc.2019.145142
(4). N.N. Rosman, R. Mohamad Yunus, L. Jeffery Minggu, K. Arifin, M.N.I. Salehmin, M.A. Mohamed, M.B. Kassim, International Journal of Hydrogen Energy. 43 (2018) 18925–18945. https://doi.org/10.1016/j.ijhydene.2018.08.126
(5). S. Bellamkonda, N. Thangavel, H.Y. Hafeez, B. Neppolian, G. Ranga Rao, Catalysis Today. 321–322 (2019) 120–127. https://doi.org/10.1016/j.cattod.2017.10.023
(6). Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. 2 (2018) 509–520. https://doi.org/10.1016/j.joule.2017.12.009
(7). H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature. 598 (2021) 304–307. https://doi.org/10.1038/s41586-021-03907-3
(8). F. Torrisi, T. Carey, Nano Today. 23 (2018) 73–96. https://doi.org/10.1016/j.nantod.2018.10.009
(9). A.A. Iqbal, N. Sakib, A.K.M.P. Iqbal, D.M. Nuruzzaman, Materialia. 12 (2020) 100815. https://doi.org/10.1016/j.mtla.2020.100815
(10). Z.A. Mansurov, M. K. Atamanov, Zh. Elemesova, B.T. Lesbaev, M.N. Chikradze, Explosion and Shock Waves. 4 (2019). https://doi.org/10.15372/FGV20190405
(11). M. Yeleuov, C. Daulbayev, A. Taurbekov, A. Abdisattar, R. Ebrahim, S. Kumekov, N. Prikhodko, B. Lesbayev, K. Batyrzhan, Diamond and Related Materials. 119 (2021) 108560. https://doi.org/10.1016/j.diamond.2021.108560
(12). C. Daulbayev, B. Kaidar, F. Sultanov, B. Bakbolat, G. Smagulova, Z. Mansurov, A Review, South African Journal of Chemical Engineering. 38 (2021) 9–20. https://doi.org/10.1016/j.sajce.2021.07.001
(13). M. Nazhipkyzy, A.B. Maltay, K. Askaruly, D.D. Assylkhanova, A.R. Seitkazinova, Z.A. Mansurov, Nanomaterials. 12 (2022) 3710. https://doi.org/10.3390/nano12203710
(14). F. Sultanov, C. Daulbayev, B. Bakbolat, O. Daulbayev, M. Bigaj, Z. Mansurov, K. Kuterbekov, K. Bekmyrza, Chemical Physics Letters. 737 (2019) 13682. https://doi.org/10.1016/j.cplett.2019.136821
(15). Z. Mansurov, Горение и плазмохимия. 17 (2019) 150–157. https://doi.org/10.18321/cpc318
(16). C. Daulbayev, F. Sultanov, A.V. Korobeinyk, M. Yeleuov, S. Azat, B. Bakbolat, A. Umirzakov, Z. Mansurov, Applied Surface Science. 549 (2021) 149176. https://doi.org/10.1016/j.apsusc.2021.149176
(17). P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9 (2018) 6814–6817. https://doi.org/10.102/acs.jpclett.8b02892
(18). H. Zong, K. Yu, Z. Zhu, Electrochimica Acta. 353 (2020) 136598. https://doi.org/10.1016/j.electacta.2020.136598
(19). D. Zheng, Z. Jing, Q. Zhao, Y. Kim, P. Li, H. Xu, Z. Li, J. Lin, Chemical Engineering Journal. 402 (2020) 125069. https://doi.org/10.1016/j.cej.2020.125069
(20). D. Mateo, A. García-Mulero, J. Albero, H. García, Applied Catalysis B: Environmental. 252 (2019) 111–119. https://doi.org/10.1016/j.apcatb.2019.04.011
(21). A.R. Marlinda, N. Yusoff, S. Sagadevan, M.R. Johan, International Journal of Hydrogen Energy. 45 (2020) 11976–11994. https://doi.org/10.1016/j.ijhydene.2020.02.096
(22). H.-S. Sajjadizadeh, E.K. Goharshadi, H. Ahmadzadeh, International Journal of Hydrogen Energy. 45 (2020) 123–134. https://doi.org/10.1016/j.ijhydene.2019.10.161
(23). I. Oh, J.-S. Youn, Y.-K. Park, K.-J. Jeon, Applied Surface Science. 529 (2020) 147089. https://doi.org/10.1016/j.apsusc.2020.147089
(24). S. Zhang, X. Zhang, X. Shi, F. Zhou, R. Wang, X. Li, Journal of Energy Chemistry. 49 (2020) 166–173. https://doi.org/10.1016/j.jechem.2020.02.022