Наноструктурированные материалы в системах хранения водорода (обзор)
DOI:
https://doi.org/10.18321/cpc534Ключевые слова:
хранение водорода, наноматериалы, гидрид, нанотрубки, адсорбция, десорбция.Аннотация
Водород является перспективным универсальным энергоносителем, который способен заменить органическое топливо в энергетической отрасли, так как обладает экологической чистотой и разнообразием возможностей преобразования энергии. В настоящее время технологии производства водорода обеспечены неограниченной сырьевой базой и позволяют вырабатывать водород в промышленных масштабах. Однако для широкомасштабного развития водородной энергетики необходимо решить ряд научных и технологических задач. Разработка наиболее экономичных и эффективных способов хранения водорода представляет собой одну из главных технологических проблем водородной энергетики. В связи с этим, в обзоре подробно обсуждены исследования, проводимые по решению проблем хранения водорода с применением гидридов, нанопористого углерода, пористых наноматериалов и композитов на их основе, а также проанализированы сопутствующие задачи и дальнейшие перспективы, связанные с поиском методов его получения.
Библиографические ссылки
(1). Al-Shahri OA, Ismail FB, Hannan MA, Lipu MSH, Al-Shetwi AQ, Begum RA, Al-Muhsen NFO, Soujeri E (2021) J. Clean. Prod. 284:125465. https://doi.org/10.1016/j.jclepro.2020.125465
(2). Cole W, Gates N, Mai T (2021) Electr. J. 34:106957. https://doi.org/10.1016/j.tej.2021.106957
(3). Li R, Leung GCK (2021) Energy Rep. 7:1712-1719. https://doi.org/10.1016/j.egyr.2021.03.030
(4). Whitmarsh L, Poortinga W, Capstick S (2021) Curr. Opin. Psychol. 42:76-81. https://doi.org/10.1016/j.copsyc.2021.04.002
(5). Singh R, Singh M, Gautam S (2020) Mater. Today Proc. S2214785320367547. https://doi.org/10.1016/j.matpr.2020.09.065
(6). Yee Mah AX, Ho WS, Hassim MH, Hashim H, Liew PY, Muis ZA (2021) Energy 218:119475. https://doi.org/10.1016/j.energy.2020.119475
(7). Zhao Y, Xu Y, Yüksel S, Dinçer H, Ubay GG (2021) Int. J. Hydrog. Energy 46:8835-8851. https://doi.org/10.1016/j.ijhydene.2020.12.211
(8). Kurtz J, Bradley T, Winkler E, Gearhart C (2020) Int. J. Hydrog. Energy 45:32298-32310. https://doi.org/10.1016/j.ijhydene.2019.10.014
(9). Mouli-Castillo J, Heinemann N, Edlmann K (2021) Appl. Energy 283:116348. https://doi.org/10.1016/j.apenergy.2020.116348
(10). Newborough M, Cooley G (2020) Fuel Cells Bull. 2020(10):16-22. https://doi.org/10.1016/S1464-2859(20)30486-7
(11). Yue T, Jiang D, Zhang Z, Zhang Y, Li Y, Zhang T, Zhang Q (2021) Bioresour. Technol. 331:125048. https://doi.org/10.1016/j.biortech.2021.125048
(12). Xin Y, Sun B, Liu J, Wang Q, Zhu X, Yan Z (2021) Renew. Energy 171:728-734. https://doi.org/10.1016/j.renene.2021.02.150
(13). Zeng Z, Jing D, Guo L (2021) Energy (2021) 120578. https://doi.org/10.1016/j.energy.2021.120578
(14). Qyyum MA, Dickson R, Ali Shah SF, Niaz H, Khan A, Liu JJ, Lee M (2021) Renew. Sustain. Energy Rev. 110843. https://doi.org/10.1016/j.rser.2021.110843
(15). Kerscher F, Stary A, Gleis S, Ulrich A, Klein H, Spliethoff H (2021) Int. J. Hydrog. Energy S0360319921010260. https://doi.org/10.18261/issn.2535-6003-2021-01-02-01
(16). Şahin S, Şahin HM (2021) Int. J. Hydrog. Energy S0360319920348175. https://doi.org/10.1016/j.ijhydene.2020.12.182
(17). Sharma P, Bera T, Semwal K, Badhe RM, Sharma A, Ramakumar SSV, Neogi S (2020) Int.J. Hydrog. Energy 45:25386-97. https://doi.org/10.1016/j.ijhydene.2020.06.269
(18). Zheng J, Zhou H, Wang C-G, Ye E, Xu JW, Loh XJ, Li Z (2021) Energy Storage Mater. 35:695-722. https://doi.org/10.1016/j.ensm.2020.12.007
(19). Doğan M, Sabaz P, Bi̇ci̇l Z, Koçer Kizilduman B, Turhan Y (2020) J. Energy Inst. 93:2176-2185. https://doi.org/10.1016/j.joei.2020.05.011
(20). Guo F, Namba K, Miyaoka H, Jain A, Ichikawa T (2021) Mater. Lett. X. 9:100061. https://doi.org/10.1016/j.mlblux.2021.100061
(21). Cabria I (2020) Int. J. Hydrog. Energy 46:12192-12205. https://doi.org/10.1016/j.ijhydene.2020.04.212
(22). Karatas M (2020) Int. J. Hydrog. Energy 45:16227-16238. https://doi.org/10.1016/j.ijhydene.2019.11.130
(23). Elberry AM, Thakur J, Santasalo-Aarnio A, Larmi M (2021) Int. J. Hydrog. Energy S0360319921005838. https://doi.org/10.1016/j.ijhydene.2021.02.080
(24). Kumar P, Singh S, Hashmi SAR, Kim K-H (2021) Nano Energy 85:105989. https://doi.org/10.1016/j.nanoen.2021.105989
(25). Shet SP, Shanmuga Priya S, Sudhakar K, Tahir M (2021) Int. J. Hydrog. Energy 46:11782-11803. https://doi.org/10.1016/j.ijhydene.2021.01.020
(26). Gholami T, Pirsaheb M (2021) Int. J. Hydrog. Energy 46:783-795. https://doi.org/10.1016/j.ijhydene.2020.10.003
(27). Lin H-J, Li H-W, Shao H, Lu Y, Asano K (2020) I Mater. Today Energy 17:100463. https://doi.org/10.1016/j.mtener.2020.100463
(28). Suyetin M (2017) Int. J. Hydrog. Energy 42:3114-3121. https://doi.org/10.1016/j.ijhydene.2017.01.062
(29). Archana K, Pillai NG, Sai Srinivasan KV, Chauhan PK, Sujith R, Rhee KY, Asif A (2020) https://doi.org/10.1016/j.ijhydene.2020.09.137
(30). Liu M, Zhao S, Xiao X, Chen M, Sun C, Yao Z, Hu Z, Chen L (2019) Nano Energy 61:540-549. https://doi.org/10.1016/j.nanoen.2019.04.094
(31). Jain V, Kandasubramanian B (2020) J. Mater. Sci. 55:1865-1903. https://doi.org/10.1007/s10853-019-04150-y
(32). Li Y, Liu H (2021) Int. J. Hydrog. Energy 46(9):6623-6631. https://doi.org/10.1016/j.ijhydene.2020.11.139
(33). Zhao Z, Zhu Z, Wang F, Li S, Bao X, Zhang L, Lin S, Ya zng Y (2021) Chem. Eng. J. 415:128885. https://doi.org/10.1016/j.cej.2021.128885
(34). Lu X, Zhang L, Yu H, Lu Z, He J, Zheng J, Wu F, Chen L (2021) Chem. Eng. J. 422:130101. https://doi.org/10.1016/j.cej.2021.130101
(35). Kag D, Luhadiya N, Patil ND, Kundalwal SI (2021) Int. J. Hydrog. Energy S0360319921014476. https://doi.org/10.1016/j.ijhydene.2021.04.098
(36). Öztürk Z (2021) Int. J. Hydrog. Energy 46:11804-11814. https://doi.org/10.1016/j.ijhydene.2021.01.073
(37). Petrushenko IK, Petrushenko KB (2019) Surfaces and Interfaces 17:100355. https://doi.org/10.1016/j.surfin.2019.100355
(38). Yuan W, Li B, Li L (2011) Applied Surface Science 257(23):10183-10187. https://doi.org/10.1016/j.apsusc.2011.07.015
(39). Anafcheh M, Naderi F (2018) Int. J. Hydrog. Energy 43(27):12271-12277. https://doi.org/10.1016/j.ijhydene.2018.05.027
(40). Qingrong Z, Weidong Z, Xuan Z, Mengbo W, Shengping L (2021) Int. J. Hydrog. Energy 46:18412-18422. https://doi.org/10.1016/j.ijhydene.2021.02.210
(41). Prasetyo N, Pambudi FI (2021) Int. J. Hydrog. Energy 46:4222-4228. https://doi.org/10.1016/j.ijhydene.2020.10.222
(42). Huang T, Huang X, Hu C, Wang J, Liu H, Xu H, Sun F, Ma Z, Zou L, Ding W (2020) Chem. Eng. J.127851. https://doi.org/10.1016/j.cej.2020.127851
(43). Tarasov BP, Fursikov PV, Volodin AA, Bocharnikov MS, Shimkus YY, Kashin AM, Yartys VA, Chidziva S, Pasupathi S, Lototskyy
MV (2021) Int. J. Hydrog. Energy 46:13647-13657. https://doi.org/10.1016/j.ijhydene.2020.07.085
(44). Wang C-S, Brinkerhoff J (2021) Int. J. Hydrog.Energy 46:12031-12034. https://doi.org/10.1016/j.ijhydene.2021.01.067
(45). Yartys VA, Lototskyy MV, Linkov V, Pasupathi S, Davids MW, Tolj I, Radica G, Denys RV, Eriksen J, Taube K, Bellosta von Colbe J, Capurso G, Dornheim M, Smith F, Mathebula D, Swanepoel D, Suwarno S (2021) Int. J. Hydrog. Energy S0360319921003608. https://doi.org/10.1016/j.ijhydene.2021.01.190
(46). Eisapour AH, Eisapour M, Talebizadehsardari P, Walker GS (2021) J. Energy Storage 36:102443. https://doi.org/10.1016/j.est.2021.102443
(47). Urunkar RU, Patil SD (2021) Int. J. Hydrog. Energy 46(37):19486-97. https://doi.org/10.1016/j.ijhydene.2021.03.090
(48). Zhang X, Cao S, Zhang N, Wang L, Chen X, Li Z (2018) Materials Chemistry and Physics 209:134-145. https://doi.org/10.1016/j.matchemphys.2017.12.082
(49). Tavhare P, Chaudhari A (2019) Materials Letters 244:104-107. https://doi.org/10.1016/j.matlet.2019.02.054
(50). Petrushenko IK, Tsar’kova AI, Petrushenko KB (2020) Diam. Relat. Mater. 108:107968. https://doi.org/10.1016/j.diamond.2020.107968
(51). Rathinavel S, Priyadharshini K, Panda D (2021) Mater. Sci. Eng. B 268:115095. https://doi.org/10.1016/j.mseb.2021.115095
(52). Jain N, Jee Kanu N (2021) Mater. Today Proc. 43:2998–3005. https://doi.org/10.1016/j.matpr.2021.01.331
(53). Hussain RA, Hussain I (2020) Mater.Chem. Phys. 256:123691. https://doi.org/10.1016/j.matchemphys.2020.123691
(54). Sultanov F, Bakbolat B, Daulbaev Ch, Urazgalieva A, Azizov Z, Mansurov Z, Tulepov M, Pei SS (2017) J. Eng. Phys. Thermophys. 90:826–830. https://doi.org/10.1007/s10891-017-1631-9
(55). Aly K, Muhuri AK, Bradford PD (2021) J. Eur. Ceram. Soc. 41:3303–3313. https://doi.org/10.1016/j.jeurceramsoc.2020.12.035
(56). Das P, Das S, Ratha S, Chakraborty B, Chatterjee S (2021) Electrochimica Acta 371:137774. https://doi.org/10.1016/j.electacta.2021.137774
(57). Laikhtman A, Michaelson S, Hoffman A, Kim TK, Moon HR, Zak A (2014) Int. J. Hydrog. Energy 39:9837–9841. https://doi.org/10.1016/j.ijhydene.2014.02.033
(58). Cardoso GL, Piquini PC, Khossossi N, Ahuja R (2021) Int. J. Hydrog. Energy S0360319921010752. https://doi.org/10.1016/j.ijhydene.2021.03.146
(59). Kosar N, Munsif S, Ayub K, Mahmood T (2021) Int. J. Hydrog. Energy 46:9163–9173. https://doi.org/10.1016/j.ijhydene.2021.01.011
(60). Ma L-C, Sun Y-R, Wang L-C, Ma L, Zhang J-M (2021) Mater. Today Commun. 26:101985. https://doi.org/10.1016/j.mtcomm.2020.101985
(61). Bi L, Yin J, Huang X, Ren S, Yan G, Wu Q, Wang Y, Yang Z (2019) Int. J. Hydrog. Energy 44:2934–2942. https://doi.org/10.1016/j.ijhydene.2018.11.212
(62). Matsumoto N, Kinoshita H, Shimanaka Y, Ohmae N (2020) Chem. Phys. Lett. 751:137530. https://doi.org/10.1016/j.cplett.2020.137530
(63). Noura M, Rahdar A, Taimoory SM, Hayward JJ, Sadraei SI, Trant JF (2020) Int. J. Hydrog. Energy 45:11176–11189. https://doi.org/10.1016/j.ijhydene.2020.02.053
(64). Wu G, Li J, Tang C, Ouyang T, He C, Zhang C, Zhong J (2019) Appl. Surf. Sci. 498:143763. https://doi.org/10.1016/j.apsusc.2019.143763
(65). Aghababaei M, Ghoreyshi AA, Esfandiari K (2020) Int. J. Hydrog. Energy 45:23112–23121. https://doi.org/10.1016/j.ijhydene.2020.06.201
(66). Liu Y, Lu F, Gao S, Shi H, Mai Y, Zhang L, Dai Y, Liao B, Hu W (2020) Int. J. Hydrog. Energy 45:10797–10805. https://doi.org/10.1016/j.ijhydene.2020.01.249
(67). Zhang L, Sun Z, Cai Z, Yan N, Lu X, Zhu X, Chen L (2020) Appl. Surf. Sci. 504:144465. https://doi.org/10.1016/j.apsusc.2019.144465
(68). Ghosh S, Padmanabhan V (2017) Diam. Relat. Mater. 77:46-52. https://doi.org/10.1016/j.diamond.2017.05.013
(69). Liu С, Chen Н, Wu С-Z, Xu S-T, Cheng H-M. (2010) Carbon 48(2):452-455. https://doi.org/10.1016/j.carbon.2009.09.060
(70). Sawant SV, Banerjee S, Patwardhan AW, Joshi JB, Dasgupta K (2020) Int. J. Hydrog. Energy 45:13406–13413. https://doi.org/10.1016/j.ijhydene.2020.03.019
(71). Sharma A (2020) Int. J. Hydrog. Energy 45:2967–2974. https://doi.org/10.1016/j.ijhydene.2019.11.093
(72). Bi L, Yin J, Huang X, Wang Y, Yang Z (2020) Int. J. Hydrog. Energy 45:17637–17648. https://doi.org/10.1016/j.ijhydene.2020.04.227
(73). Sharma A (2020) Int. J. Hydrog. Energy 45:23966–23970. https://doi.org/10.1016/j.ijhydene.2019.09.025
(74). Yartys VA, Lototskyy MV, Akiba E, Albert R, Antonov VE, Ares JR, Baricco M, Bourgeois N, Buckley CE, Bellosta von Colbe JM, Crivello J-C, Cuevas F, Denys RV, Dornheim M, Felderhoff M, Grant DM, Hauback BC, Humphries TD, Jacob I, Jensen TR, de Jongh PE, Joubert J-M, Kuzovnikov MA, Latroche M, Paskevicius M, Pasquini L, Popilevsky L, Skripnyuk VM, Rabkin E, Sofianos MV, Stuart A, Walker G, Wang H, Webb CJ, Zhu M (2019) Int. J. Hydrog. Energy 44:7809–7859. https://doi.org/10.1016/j.ijhydene.2018.12.212
(75). Wang K, Zhang X, Liu Y, Ren Z, Zhang X, Hu J, Gao M, Pan H (2021) Chem. Eng. J. 406:126831. https://doi.org/10.1016/j.cej.2020.126831
(76). Huang T, Huang X, Hu C, Wang J, Liu H, Ma Z, Zou J, Ding W (2021) Mater. Today Energy 19:100613. https://doi.org/10.1016/j.mtener.2020.100613
(77). Pan WY, Liu BH, Li ZP (2014) Int. J. Hydrog. Energy 39:15595–15603. https://doi.org/10.1016/j.ijhydene.2014.07.151
(78). Tarasov BP, Lototskii MV, Yartys’ VA (2007) Russ J Gen Chem 77:694-711. https://doi.org/10.1134/S1070363207040329
(79). Heo Y-J, Park S-J (2018) Journal of Industrial and Engineering Chemistry 31: 330-334. https://doi.org/10.1016/j.jiec.2015.07.006
(80). Wang LF, Yang RT (2010) Catalysis Reviews 52:411-461. https://doi.org/10.1080/01614940.2010.520265
(81). Chung T-Y, Tsao C-S, Tseng H-P, Chen C-H, Yu M-S (2015) Journal of Colloid and Interface Science 441:98-105. https://doi.org/10.1016/j.jcis.2014.10.062
(82). Parambhath VB, Nagar R, Ramaprabhu S (2012) Langmuir 28:7826-7833. https://doi.org/10.1021/la301232r
(83). Vinayan BP, Sethupathi K, Ramaprabhu S (2013) Int. J. Hydrog. Energy 38:2240-2250. https://doi.org/10.1016/j.ijhydene.2012.11.091
(84). Zhao W, Luo L, Chen T, Li Z, Zhang Z, Wang H, Rao J, Feo L, Fan M (2019) Composites Part B: Engineering 161:464-472. https://doi.org/10.1016/j.compositesb.2018.12.122
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.