DEVELOPING OF HYBRID ELECTRODES FOR SUPERCAPACITORS FROM BIOMASSDERIVED ACTIVATED CARBONS WITH CARBON NANOTUBES

Authors

  • T.S. Temirgaliyeva Institute of Combustion Problems, Almaty, Kazakhstan; al-Farabi Kazakh National University, Almaty, Kazakhstan
  • K. Soki Waseda University, Tokyo, Japan
  • M. Nazhipkyzy Institute of Combustion Problems, Almaty, Kazakhstan; al-Farabi Kazakh National University, Almaty, Kazakhstan
  • S. Noda Waseda University, Tokyo, Japan
  • A.R. Kerimkulova Institute of Combustion Problems, Almaty, Kazakhstan; al-Farabi Kazakh National University, Almaty, Kazakhstan
  • B.T. Lesbayev Institute of Combustion Problems, Almaty, Kazakhstan; al-Farabi Kazakh National University, Almaty, Kazakhstan
  • N.G. Prikhodko Institute of Combustion Problems, Almaty, Kazakhstan;University of Power Engineering and Telecommunications Almaty, Kazakhstan
  • Z.A. Mansurov Institute of Combustion Problems, Almaty, Kazakhstan; al-Farabi Kazakh National University, Almaty, Kazakhstan

Keywords:

electrochemical capacitors, electrode, activated carbons, few-walled carbon nanotubes

Abstract

In this paper, environmental clean, activated carbons (AC) and flexible, long, conductive FWCNT (Few walled carbon nanotubes) were used as a composite material to create a hybrid supercapacitor electrode without addition of polymer binder materials. In work to create electrode, an activated carbons (AC) was used, which was obtained from walnut shell (WS), apricot stones (AS) and activated carbon of brand YP- 80F (Kuraray Chemical Co., Osaka Japan) and FWCNT, in weight ratio AC:FWCNT 9:1. The strong hybrid electrodes AC-FWCNT were obtained by a light three-step method (mixing, dispersion and filtration). Electrochemical properties of the obtained electrodes were investigated by the method of Cyclic Voltammetry (CV). Also, the morphological properties of the obtained electrodes were studied by the Scanning Electron Microscope (SEM), the specific surface by the Brunauer-Emmett-Teller analysis. Based on the results of a study of the electrochemical characteristics of electrodes based on carbon materials, the AS-FWCNT, WS-FWCNT hybrid electrodes showed a high specific capacity than the YP-80FFWCNT electrodes.

References

(1) Wen Lu, Rachel Hartman. Nanocomposite Electrodes for High-Performance Supercapacitors // J. Phys. Chem. Lett. – 2011. – V.2. – P.655-660.

(2) A. Lewandowski and M. Galinski. Practical and theoretical limits for electrochemical dou-ble-layer capacitors // J. Power Sources. –2007. – №173. – P.822.

(3) Nirwan Syarif. Performance of Biocarbon Based Electrodes for Electrochemical Capacitor // Energy Procedia. – 2014. – V.52. – P.18-25.

(4) K.K. Kudaybergenov, E.K. Ongarbayev, Z.A. Mansurov. Thermally treated rice husks for petroleum adsorption // International Journal of Biology and Chemistry. – 2012. – V.3. – P.3-12.

(5) A.R. Kerimkulova, M.A. Seitzhanova, M.R. Kerimkulova, M.Zh. Mambetova, Z.A. Man-surov. Preparation of activated carbons using car-bonation rice husks, poplar tree, saxaul, corncob and apricot stones // News of the National Acade-my of Sciences of the Republic of Kazakhstan, Series chemistry and technology. – 2015. – №.3 (411) – P.67-77.

(6) Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, K. Yoshikawa and M. Ishi-kawa. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors // J. Electrochem. Soc. – 2008. – V.155 – P.930.

(7) C. Niu, E.K. Sichel, R. Hoch, D. Moy and H. Tennent. High power electrochemical capacitors based on carbon nanotube electrodes // Appl. Phys. Lett. – 1997. – V.70. – P.1480.

(8) L. A. Girifalco, M. Hodak and R. S. Lee, Carbon nanotubes, buckyballs, ropes, and a univer-sal graphitic potential // Phys. Rev. B: Condens. Matter. – 2000. – V.62. – P.13104.

(9) T. Hertel, R. E. Walkup and P. Avouris. Deformation of carbon nanotubes by surface van der Waals forces // Phys. Rev. B: Condens. Matter. – 1998. – V.58. – P.13870.

(10) Kim D. Y., Sugime H., Hasegawa K., Osawa T., Noda S. Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor // Carbon. – 49. – 2011. – P.1972.

(11) Chen Z., Kim D. Y., Hasegawa K., Osa-wa T. and Noda S. Over 99.6 wt%-pure, sub-millimeter-long carbon nanotubes realized by fluid-ized-bed with careful control of the catalyst and carbon feeds // Carbon. – 2014. – 80. – P.339.

(12) Ricardo Quintero, Dong Young Kim, Kei Hasegawa, Yuki Yamada, Atsuo Yamada and Suguru Noda. Important factors for effective use of carbon nanotube matrices in electrochemical capacitor hybrid electrodes without binding addi-tives // RSC Adv. – 015. – V.5. – P.16101.

(13) Zhang L.L., Zhou R. and Zhao X.S. Gra-phene-based materials as supercapacitor electrodes // J. Mater. Chem. – 2010. – V.20. – P.5983.

(14) Kim K.-W., Kuppuswamy M. and Savinell R.F. Electrochemical oxidation of benzene at a glassy carbon electrode // J. Appl. Electro-chem. – 2000. – V.30. – P.543–549.

(15) Quintero R., Kim D. Y., Hasegawa K., Yamada Y., Yamada A. and Noda S. Carbon nanotube 3D current collectors for lightweight, high performance and low cost supercapacitor elec-trodes // RSC Adv. – 2014. – V. 4. – P.8230.

Downloads

Published

2017-12-20

How to Cite

Temirgaliyeva, T., Soki, K., Nazhipkyzy, M., Noda, S., Kerimkulova, A., Lesbayev, B., Prikhodko, N., & Mansurov, Z. (2017). DEVELOPING OF HYBRID ELECTRODES FOR SUPERCAPACITORS FROM BIOMASSDERIVED ACTIVATED CARBONS WITH CARBON NANOTUBES. Combustion and Plasma Chemistry, 15(4), 279–286. Retrieved from https://cpc-journal.kz/index.php/cpcj/article/view/267

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>