Reinforced composite material with carbon nanotubes and their application to pyrotechnic delay compositions
Keywords:
belay composition, carbon nanotubes, pyrotechnic composition, titanium.Abstract
The original delay composition cannot ensure the reliability and safety of the ammunition under complicated environment, for example low precision of burning rate at high density charge. To improve delay precision, combustion reliability, carbon nanotubes are added into pyrotechnics delay compositions. In recent years, reinforced composite material with carbon nanotubes are of considerable interest. The unique properties of carbon nanotubes make it possible to use them in various industries, including pyrotechnics. We have developed a slow pyrotechnic composition based on modified components. Titanium and carbon nanotubes were mixed by the ball-milling method. Particle size analysis showed that particle size exponential declined with increase in milling time. Results of scanning electron microscopy showed that carbon nanotubes were dispersed in titanium powder after 2 min. of mechanoactivation. Ti/carbon nanotubes were applied to fuel agent of delay composition. We studied the burning rate of BaCrO4/carbon nanotubes/Ti delay composition. It is proved that certain amount of carbon nanotubes added to delay composition can increase delay precision and further doing so achieved less temperature dependence.
References
(1). Шидловский А.А. Основы пиротехники: учеб. пособие. М.: Машиностроение, 1973. 321 с.
(2). Жуков Б.П. Энергетические конденсированые системы: Краткий энциклопедический словарь. М.: Янус-К, 2000. 596 с.
(3). Полард Ф.Б., Арнольд Дж. Б. Вспомогательные системы ракетно-космической техники. М.: Мир, 1970. 400 с.
(4). Hardt A.P. Pyrotechnics. Post Falls. Jdacho. USA: Pyrotechnica Publications, 2001. 430 p.
(5). Jacqueline Akhavan, The chemistry of explosive, The Royal Society of chemistry, 2004. 382 p.
(6). Curtin W.A., Sheldon B.W. CNT-reinforced ceramics and metals // Mater. Today 2004. № 7 (11). P. 44-49. https://doi.org/10.1016/S1369-7021(04)00508-5
(7). Li C.D., Wang X.J., Liu W.Q., Wu K., Shi H.L., Ding C., et al., Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite // Mater. Sci. Eng. A 2014. 597. P. 264-269. https://doi.org/10.1016/j.msea.2014.01.008
(8). Suarez S., Ramos-Moore E., Lechthaler B., Mücklich F. Grain growth analysis of multiwalled carbon nanotube-reinforced bulk Ni composites // Carbon-2014. 70. P. 173-178. https://doi.org/10.1016/j.carbon.2013.12.089
(9). Sivakumar R., Guo S.Q., Nishimura T., Kagawa Y. Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites // Scr. Mater. 2007. 56. P. 265-268. https://doi.org/10.1016/j.scriptamat.2006.10.025
(10). Кузнецов В.Л. Многослойные углеродные нанотрубки, Институт Катализа СО РАН. http:// catalysis.ru/block/index.php?ID=3&SECTION_ ID=1513
(11). Аввакумов Е.Г., Поткин А.Р., Самарин О.И. − Бюл. Изобрет. А.с. № 975068 (СССР). Планетарная мельница / − 1982. − № 43.