Тепловой взрыв в механически активированных смесях титана с углеродными нанотрубками

Авторы

  • Ш.Е. Габдрашова КазНУ им. аль-Фараби, пр. аль-Фараби 71, Алматы, Казахстан
  • Г.Б. Буркашева КазНУ им. аль-Фараби, пр. аль-Фараби 71, Алматы, Казахстан
  • С.Е. Токтагул КазНУ им. аль-Фараби, пр. аль-Фараби 71, Алматы, Казахстан
  • М.А. Корчагин Институт химии твердого тела и механохимии СО РАН, ул. Кутателадзе, 18, Новосибирск, Россия
  • М.И. Тулепов КазНУ им. аль-Фараби, пр. аль-Фараби 71, Алматы, Казахстан

DOI:

https://doi.org/10.18321/cpc401

Ключевые слова:

углеродные нанотрубки, титан, тепловой взрыв, механоактивация.

Аннотация

Настоящая работа посвящена взаимодействию многостенных углеродных нанотрубок с металлическим титаном при высокоэнергетическом шаровом измельчении и тепловом взрыве. Проведен анализ зависимости характеристик горения нанокомпозитов от продолжительности измельчения порошковых смесей. Методом рентгеновской дифракции проанализированы фазовые и структурные превращения смесей Ti-МУНТ.

Библиографические ссылки

(1). W.A. Curtin, B.W. Sheldon, CNT-reinforced ceramics and metals, Mater. Today 7 (11) (2004) 44-49. https://doi.org/10.1016/S1369-7021(04)00508-5

(2). S. Suarez, E. Ramos-Moore, B. Lechthaler, F. Mücklich, Grain growth analysis of multiwalled carbon nanotube-reinforced bulk Ni composites, Carbon 70 (2014) 173-178. https://doi.org/10.1016/j.carbon.2013.12.089

(3). R. Sivakumar, S.Q. Guo, T. Nishimura, Y. Kagawa, Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites, Scr. Mater. 56 (2007) 265-268. https://doi.org/10.1016/j.scriptamat.2006.10.025

(4). B. Chen, S.F. Li, H. Imai, L. Jia, J. Uneda, M. Takahashi, et al., Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests, Compos. Sci. Technol. 113 (2015) 1-8. https://doi.org/10.1016/j.compscitech.2015.03.009

(5). P.C. Tsai, Y.R. Jeng, Experimental and numerical investigation into the effect of carbon nanotube buckling on the reinforcement of CNT/Cu composites, Compos. Sci. Technol. 79 (2013) 28-34. https://doi.org/10.1016/j.compscitech.2013.02.003

(6). S.J. Yoo, S.H. Han, W.J. Kim, A combination of ball milling and high-ratio differential speedrolling for synthesizing carbon nanotube copper composites, Carbon 61 (2013) 487-500. https://doi.org/10.1016/j.carbon.2013.04.105

(7). S.J. Yoo, S.H. Han, W.J. Kim, Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube-containing aluminum powders, Scr. Mater. 67 (2012) 129-132. https://doi.org/10.1016/j.scriptamat.2012.03.040

(8). C.D. Li, X.J. Wang, W.Q. Liu, K. Wu, H.L. Shi, C. Ding, et al., Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite, Mater. Sci. Eng. A 597 (2014) 264-269. https://doi.org/10.1016/j.msea.2014.01.008

(9). H. Fukuda, K. Kondoh, J. Umeda, B. Fugetsu, Interfacial analysis between Mg matrix and carbon nanotubes in Mge6 wt.% Al alloy matrix composites reinforced with carbon nanotubes, Compos. Sci. Technol. 71 (2011) 705-709. https://doi.org/10.1016/j.compscitech.2011.01.015

(10). J. Stein, B. Leczowski, N. Frety, E. Anglaret, Mechanical reinforcement of a high-performance aluminium mechanical reinforcement of a highperformance aluminium carbon nanotubes, Carbon 50 (2012) 2264-2272. https://doi.org/10.1016/j.carbon.2012.01.044

(11). W.J. Kim, S.H. Lee, High-temperature deformation behavior of carbon nanotube (CNT)-reinforced aluminum composites and prediction of their high-temperature strength, Compos. Part A Appl. Sci. Manuf. 67 (2014) 308-315. https://doi.org/10.1016/j.compositesa.2014.09.008

(12). S.J. Yoo, S.H. Han,W.J. Kim, Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes, Scr. Mater. 68 (2013) 711-714. https://doi.org/10.1016/j.scriptamat.2013.01.013

(13). B. Chen, S.F. Li, H. Imai, L. Jia, J. Uneda, M. Takahashi, et al., Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites, Micron 69 (2015) 1-5. https://doi.org/10.1016/j.micron.2014.10.005

(14). J.Y. Hwang, B.K. Lim, J. Tiley, R. Banerjee, S.H. Hong, Interface analysis of ultra-high strength carbon nanotube/nickel composites processed by molecular level mixing, Carbon 57 (2013) 282-287. https://doi.org/10.1016/j.carbon.2013.01.075

(15). S. Suarez, E. Ramos-Moore, B. Lechthaler, F. Mücklich, A high temperature X-ray diffraction study of the influence of MWCNTs on the thermal expansion of MWCNT/Ni composites, Carbon 51 (2013) 404-409. https://doi.org/10.1016/j.carbon.2012.09.002

(16). S. Suarez, F. Lasserre, F. Mücklich, Mechanical properties of MWCNT/Ni bulk composites: influence of the microstructural refinement on the hardness, Mater. Sci. Eng. A 587 (2013) 381-386. https://doi.org/10.1016/j.msea.2013.08.058

(17). M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381 (1996). https://doi.org/10.1038/381678a0

(18). Q.Z. Zhao, M.B. Nardelli, J. Bernholc, Phys. Rev. B 65 (2002). https://doi.org/10.1103/PhysRevB.65.144105

(19). E.W.Wong, P.E. Sheehan, C.M. Lieber, Science 271 (1997). https://doi.org/10.1126/science.277.5334.1971

(20). P.M. Ajayan, Chem. Rev. 99 (1999) 1787. https://doi.org/10.1021/cr970102g

(21). S.F. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite, Compos. Part A-Appl. Sci. Manuf. 48 (2013) 57-66. https://doi.org/10.1016/j.compositesa.2012.12.005

(22). K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, B. Fugetsu, Characteristics of powder metallurgy pure titanium matrix composite reinforced with multiwall carbon nanotubes, Compos. Sci. Technol. 69 (2009) 1077-1081. https://doi.org/10.1016/j.compscitech.2009.01.026

(23). K. Kondoh, T. Threrujirapapong, J. Umeda, B. Fugetsu, High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion, Compos. Sci. Technol. 72 (8) (2012) 1291- 1297. https://doi.org/10.1016/j.compscitech.2012.05.002

(24). Рогачев А.С., Мукасьян А.С. Горение для синтеза материалов. М.: ФИЗМАТЛИТ, 2012. – 400 с.

(25). Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б., Шарафутдинов М.Р., Баринова А.П., Ля хов Н.З. Твердофазный режим горения в ме ханически активированных СВС-системах. I. Влияние продолжительности механической активации на характеристики процесса и состав продуктов горения // Физика горения и взрыва. 2003. Т.39, №1. с.51-59.

(26). Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б., Шарафутдинов М.Р., Баринова А.П., Ляхов Н.З. Твердофазный режим горения в механически активированных СВС-системах. II. Влияние режимов механической активации на характеристики процесса и состав продуктов горения // Физика горения и взрыва. 2003. Т.39, №1. с.60-68.

(27). Корчагин М.А., Ляхов Н.З. Самораспространяющийся высокотемпературный синтез в механически активированных составах // Химическая физика. 2008, т. 27, № 1, с. 73-78.

(28). Filimonov Valeriy Yu., Korchagin Michail A., Ditenberg Ivan A., Tyumentsev Alexander N., Lyakhov Nicolay Z. High temperature synthesis of single-phase Ti3Al intermetallic compound in mechanically activated powder mixture // Powder Technology, 335 (2013), p. 606-613. https://doi.org/10.1016/j.powtec.2012.11.022

(29). Filimonov V.Yu., Korchagin M.A., Lyakhov N.Z. “Kinetics of mechanically activated high temperature synthesis of Ni3Al in the thermal explosion mode” // Intermetallics, 2011,Vol. 19, p. 833-840. https://doi.org/10.1016/j.intermet.2010.11.028

(30). Корчагин М.А., Филимонов В.Ю., Смирнов Е.В, Ляхов Н.З. Тепловой взрыв в механически активированной смеси 3Ni + Al // Фи зика горения и взрыва, 2010, т. 46, № 1, с. 48-53.

(31). М.А. Корчагин, Н.В. Булина. Сверхадиабатический режим теплового взрыва в механически активированной смеси вольфрама с сажей. // Физика горения и взрыва. – 2016. – T. 52, № 2. − с. 112-121.

(32). А.с. № 975068 (СССР). Планетарная мельница / Аввакумов Е.Г., Поткин А.Р., Самарин О.И. − Бюл. Изобрет. − 1982. − № 43.

(33). Авакумов Е.Г. Механические методы активации химических процессов. Новосибирск. Изд-во Наука, 1986. – 305 с.

(34). http://catalysis.ru/block/index.php?ID=3&SECTION_ID=1513

(35). Корчагин М.А. Тепловой взрыв в механически активированных низкокалорийных составах. // Физика горения и взрыва, 2015 − т. 51 − № 5 − с. 77-86.

Загрузки

Опубликован

18-12-2020

Как цитировать

Габдрашова, Ш., Буркашева, Г., Токтагул, С., Корчагин, М., & Тулепов, М. (2020). Тепловой взрыв в механически активированных смесях титана с углеродными нанотрубками. Горение и плазмохимия, 18(4), 190–199. https://doi.org/10.18321/cpc401

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>