ПОЛУЧЕНИЕ СИНТЕЗ-ГАЗ ГАЗИФИКАЦИЕЙ УГЛЯ И УГЛЕКИСЛОТНОЙ КОНВЕРСИЕЙ МЕТАНА. ПРОЦЕСС ФИШЕРА-ТРОПША

Authors

  • K. Dossumov The Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan
  • G.E. Ergazieva 1The Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan
  • B.T. Ermagambet LLP Institute Chemistry of Coal and Technology, Orlykol str., 10, Nur-Sultan, Kazakhstan
  • N.U. Nurgaliev LLP Institute Chemistry of Coal and Technology, Orlykol str., 10, Nur-Sultan, Kazakhstan
  • L.K. Myltykbayeva The Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan
  • M.M. Telbayeva The Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan
  • Zh.M. Kassenova LLP Institute Chemistry of Coal and Technology, Orlykol str., 10, Nur-Sultan, Kazakhstan
  • M.M. Mambetova The Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan
  • A.V. Mironenko The Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc307

Keywords:

synthesis gas, dry reforming of methane, coal gasification, Fischer-Tropsch synthesis, catalyst

Abstract

The methods of obtaining synthesis gas by coal gasification and dry reforming of methane, also production obtaining of liquid hydrocarbons by the Fischer-Tropsch method are considered in this manuscript. It was established that during the gasification of coal in a dense layer by the direct method, at a temperature of 900 °C, the formation of synthesis gas with a H2:CO ratio of 1.8: 1.0 is observed. When dry reforming of methane on 5 wt.% NiO-MoO3/Al2O3 catalyst at a reaction temperature of 800 °C, with a CH4:CO2 ratio in the initial reaction mixture equal to 3:1, it is possible to obtain a synthesis gas of composition 2:1. It was determined that in the temperature range of 250-350 oC and a pressure of 5 atm. in the presence of a CuO–ZnO/CaA catalyst, synthesis gas with a ratio of 2:1 (H2:CO) is converted into liquid hydrocarbons (methanol, ethanol and dimethyl ether). The yield of liquid hydrocarbons is 10-15 vol.%.

References

(1). H.E. Figen, S.Z. Baykara, Hydrogen production by partial oxidation of methane over Co based, Ni and Ru monolithic catalysts, Int. J. Hydrogen Energy. 40 (2018) 7439–7451. https://doi.org/10.1016/j.ijhydene.2015.02.109

(2). K. Dossumov, G.E. Yergazyieva, Myltykbayeva L.K., U. Suyunbaev, N.A. Asanov, A.M. Gyulmaliev, Oxidation of Methane over Polyoxide Catalysts, Coke and Chemistry. 58 [5] (2015) 178–183. https://doi.org/10.3103/S1068364X15050026

(3). Ермагамбет Б.Т., Загрутдинов Р.Ш., Касенова Ж.М., Нургалиев Н.У., Сайранбек А. Технологии газификации обращенного процесса с тремя зонами горения // Международная научно- практическая конференция «Инновации в области естественных наук как основа экспортоориентированной индустриализации Казахстана», 4-5 апреля, 2019. С. 459-463.

(4). I. Iglesias, G. Baronetti, F. Marino, Ni/Ce0.95M0.05O2−d (M=Zr, Pr, La) for methane steam reforming at mild conditions,Int. J. Hydrogen Energy. 42 (2017) 29735–29744. https://doi.org/10.1016/j.ijhydene.2017.09.176

(5). D. Czylkowski, B. Hrycak, M. Jasinski, M. Dors, J. Mizeraczyk, Microwave plasma-based method of hydrogen production via combined reforming of methane, Energy. 113 (2016) 653–661. https://doi.org/10.1016/j.energy.2016.07.088

(6). M. Luneau, E. Gianotti, F.C. Meunier, C. Mirodatos, E. Puzenat, Y. Schuurman, N. Guilhaume. Deactivation mechanism of Ni supported on Mg- Al spinel during autothermal reforming of model biogas, Appl. Catal., B: Environ. 203 (2017) 289-299. https://doi.org/10.1016/j.apcatb.2016.10.023

(7). Karima Rouibah, Akila Barama, Rafik Benrabaa, Jesus Guerrero-Caballero, Tanushree Kane, Rose- Noelle Vannier, Annick Rubbens, Axel Lofberg, Dry reforming of methane on nickel-chrome, nickelcobalt and nickel-manganese catalysts, Int. J. Hydrogen Energy. 42 (2017) 29725–29734. https://doi.org/10.1016/j.ijhydene.2017.09.176

(8). B.K. Kassenov, B.T. Yermagambet, Sh.B. Kassenova, N.S. Bekturganov, and M.A. Nabiyev. Heat Capacity of from the Maikube, Sary-Adyr, and Kendyrlyk Deposits in Kazakhstan // Solid Fuel Chemistry. – 2015. – Vol. 49. – №.6 – P. 343. https://doi.org/10.3103/S0361521915060038

(9). K. Dossumov, G.Ye. Yergaziyeva, L.K. Myltykbayeva, N.A. Asanov, Effect of Co, Ce, and La Oxides as Modifying Additives on the Activity of an NiO/γ- Al2O3 Catalyst in the Oxidation of Methane to Give Synthesis Gas, Theor. Exp. Chem. 52 (2016) 119-122. https://doi.org/10.1007/s11237-016-9459-5

(10). G. Aldashukurova, A. Mironenko, N. Shikina, S. Yashnik, Z. Ismagilov, Carbon Dioxide Reforming of Methane over Co-Ni Catalysts, Chemical Engineering Transactions. 25 (2011) 63-68.

(11). Ермағамбет Б.Т, Нургалиев Н.У, Набиев М.А., Касенова Ж.М., Холод А.В., Зикирина А.М., Дауылбаев М.Д., Получение горючего газа методом слоевой газификации с обращенным дутьем // Промышленность Казахстана, Алматы. – 2016. – № 2(95). – С. 66-70.

(12). O. Yamazaki, T. Nozaki, K. Omata, K. Fujimoto, Reduction of Carbon Dioxide by Methane with Nion- MgO-CaO Containing Catalysts, Chem. Lett. 21 (1992) 1953–1954. https://doi.org/10.1246/cl.1992.1953

(13). Z.L. Zhang, X.E. Verykios, Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts, Catal. Today. 21 (1994) 589–595. https://doi.org/10.1016/0920-5861(94)80183-5

Published

2019-05-25

How to Cite

Dossumov, K., Ergazieva, G., Ermagambet, B., Nurgaliev, N., Myltykbayeva, L., Telbayeva, M., Kassenova, Z., Mambetova, M., & Mironenko, A. (2019). ПОЛУЧЕНИЕ СИНТЕЗ-ГАЗ ГАЗИФИКАЦИЕЙ УГЛЯ И УГЛЕКИСЛОТНОЙ КОНВЕРСИЕЙ МЕТАНА. ПРОЦЕСС ФИШЕРА-ТРОПША . Combustion and Plasma Chemistry, 17(2), 110–116. https://doi.org/10.18321/cpc307

Most read articles by the same author(s)