ТЕРМОДИНАМИКА И КИНЕТИКА ФОТОКАТАЛИЗА ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ПРИ РАСЩЕПЛЕНИИ ВОДЫ

Authors

  • B. Bakbolat Al-Farabi Kazakh National University, ave. Al-Farabi 71, Almaty, Kazakhstan; The Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan
  • F. Sultanov Al-Farabi Kazakh National University, ave. Al-Farabi 71, Almaty, Kazakhstan; The Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan
  • Ch. Daulbaev Al-Farabi Kazakh National University, ave. Al-Farabi 71, Almaty, Kazakhstan; The Institute of Combustion Problems, Bogenbai Batyr str., 172, Almaty, Kazakhstan
  • K. Kuterbekov L.N. Gumilyov Eurasian National University, Satbayev str., 2, Nur-Sultan, Kazakhstan
  • K. Bekmyrza L.N. Gumilyov Eurasian National University, Satbayev str., 2, Nur-Sultan, Kazakhstan

DOI:

https://doi.org/10.18321/cpc302

Keywords:

Photocatalysis, hydrogen, water splitting, Gibbs energy.

Abstract

The purpose of this work is to describe the mechanism of the process of splitting water during photocatalysis. The development of obtaining highly efficient photocatalysts for hydrogen production is one of the important areas in the field of green energy. This paper presents a review article, which discusses the mechanism and basic patterns of photocatalysis of water splitting to produce hydrogen. The influence of the band gap of semiconductors on their photocatalytic properties is discussed. 

References

(1). Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode // Nature – 1972. – V. 238. – P. 37–38. https://doi.org/10.1038/238037a0

(2). Babu V.J., Kumar M.K., Nair A.S., Kheng T.L., Allakhverdiev S.I., Ramakrishna S. Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures // Int. J. Hydrog. Energy – 2012. – V. 37. – P. 8897–8904. https://doi.org/10.1016/j.ijhydene.2011.12.015

(3). Niishiro R., Kato H., Kudo A. Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions // Phys. Chem. Chem. Phys. – 2005. – V. 7. – P. 2241–2245. https://doi.org/10.1039/b502147b

(4). Zuo F., Wang L., Feng P.Y. Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity // Int. J. Hydrog. Energy. – 2014. – V. 39. – P. 711–717. https://doi.org/10.1016/j.ijhydene.2013.10.120

(5). Qu Y., Zhou W., Ren Z.Y., Tian C.G., Li J.L., Fu H.G. Heterojunction Ag–TiO2 nanopillars for visible-lightdriven photocatalytic H2 production // ChemPlusChem. – 2014. – V. 79. – P. 995–1000. https://doi.org/10.1002/cplu.201402012

(6). Reddy P.A.K., Srinivas B., Kumari V.D., Shankar M.V., Subrahmanyam M., Lee J.S. CaFe2O4 sensitized hierarchical TiO2 photo composite for hydrogen production under solar light irradiation // Chem. Eng. J. – 2014. – V. 247. – P. 152–160. https://doi.org/10.1016/j.cej.2014.02.076

(7). Yan J.H., Zhu Y.R., Tang Y.G., Yang H.H. Preparation and photocatalytic activity for H2 production over Pt/SrZr0.95Y0.05O3TiO2−xNx composite catalyst under simulated sunlight irradiation // Chin. J. Inorg. Chem. – 2008. – V. 24. – P. 791–796.

(8). Ding J.J., Sun S., Yan W.H., Bao J., Gao C. Photocatalytic H2 evolution on a novel CaIn2S4 photocatalyst under visible light irradiation // Int. J. Hydrog. Energy. – 2013. – V. 38. – P. 13153–13158. https://doi.org/10.1016/j.ijhydene.2013.07.109

(9). Gupta U., Rao B.G., Maitra U., Prasad B.E., Rao C.N.R. Visible-light-induced generation of H2 by nanocomposites of few-layer TiS2 and TaS2 with CdS nanoparticles // Chem. Asian J. – 2014. – V. 9. – P. 1311–1315. https://doi.org/10.1002/asia.201301537

(10). Yang M.Q., Weng B., Xu Y.J. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach // Langmuir. – 2013. – V. 29. – P. 10549–10558. https://doi.org/10.1021/la4020493

(11). Zhang J., Yu J.G., Zhang Y.M., Li Q., Gong J.R. Visible light photocatalytic H2 production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer // Nano Lett. – 2011. – V. 11. – P. 4774–4779. https://doi.org/10.1021/nl202587b

(12). Zhang X.H., Jing D.W., Liu M.C., Guo L.J. Efficient photocatalytic H2 production under visible light irradiation over Ni doped Cd1−xZnxS microsphere photocatalysts // Catal. Commun. – 2008. – V. 9. – P. 1720–1724. https://doi.org/10.1016/j.catcom.2008.01.032

(13). Zong X., Yan H.J., Wu G.P., Ma G.J., Wen F.Y., Wang L., Li C. Enhancement of photocatalytic H2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation // J. Am. Chem. Soc. – 2008. – V. 130. – P. 7176–7177. https://doi.org/10.1021/ja8007825

(14). Zhou C., Zhao Y.F., Shang L., Cao Y.H., Wu L.Z., Tung C.H., Zhang T.R. Facile preparation of black Nb4+ self-doped K4Nb6O17 microspheres with high solar absorption and enhanced photocatalytic activity// Chem. Commun. – 2014. – V. 50. – P. 9554–9556. https://doi.org/10.1039/C4CC04432K

(15). Yan H.J., Yang J.H., Ma G.J., Wu G.P., Zong X., Lei Z.B., Shi J.Y., Li C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst // J. Catal. – 2009. – V. 266. – P. 165–168. https://doi.org/10.1016/j.jcat.2009.06.024

(16). Zou Z.G., Ye J.H., Arakawa H. Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts // J. Mol. Catal. A Chem. – 2001. – V. 168. – P. 289–297. https://doi.org/10.1016/S1381-1169(00)00545-8

(17). Luan J.F., Chen J.H. Photocatalytic water splitting for hydrogen production with novel Y2MSbO7 (M = Ga, In, Gd) under visible light irradiation // Materials. – 2012. – V. 5. – P. 2423–2438. https://doi.org/10.3390/ma5112423

(18). Huang Y., Zheng Z., Ai Z.H., Zhang L.Z., Fan X.X., Zou Z.G. Core-shell microspherical Ti1−xZrxO2 solid solution photocatalysts directly from ultrasonic spray pyrolysis // J. Phys. Chem. B. – 2006. – V. 110. – P. 19323–19328. https://doi.org/10.1021/jp064135o

(19). Tang J.W., Zou Z.G., Yin J., Ye J. Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation // Chem. Phys. Lett. – 2003. – V. 382. – P. 175–179. https://doi.org/10.1016/j.cplett.2003.10.062

(20). Luan J.F., Ma K., Pan B.C., Li Y.M., Wu X.S., Zou Z.G. Synthesis and catalytic activity of new Gd2BiSbO7 and Gd2YSbO7 nanocatalysts // J. Mol. Catal. A Chem. – 2010. – V. 321. – P. 1–9. https://doi.org/10.1016/j.molcata.2010.02.003

(21). Luan J.F., Xu Y. Photophysical property and photocatalytic activity of new Gd2InSbO7 and Gd2FeSbO7 compounds under visible light irradiation // Int. J. Mol. Sci. – 2013. – V. 14. – P. 999–1021. https://doi.org/10.3390/ijms14010999

(22). Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium // Phys. Status Solid. – 1966. – V. 15. – P. 627–637. https://doi.org/10.1002/pssb.19660150224

(23). Butler M. Photoelectrolysis and physical-properties of semiconducting electrode WO2 // J. Appl. Phys. – 1977. – V. 48. – P. 1914–1920. https://doi.org/10.1063/1.323948

(24). Moniruddin Md., Ilyassov B., Zhao X., Smith E., Serikov T., Ibrayev N., Asmatulu R., Nuraje N.. Recent progress on perovskite materials in photovoltaic and water splitting applications // Material Today Energy. – 2017. – V. 7. – P. 246-259. https://doi.org/10.1016/j.mtener.2017.10.005

(25). O’Regan B. and Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films/ // Nature. – 1991. – V. 353, №6346. – P. 737–740. https://doi.org/10.1038/353737a0

(26). Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation // J. Photochem Photobiol C – 2010. – V. 11. – P. 179-209. https://doi.org/10.1016/j.jphotochemrev.2011.02.003

(27). Shi N., Li X., Fan T., Zhou H., Zhang D., Zhu H. Artificial chloroplast: Au/chloroplast-morph-TiO2 with fast electron transfer and enhanced photocatalytic activity // Int J Hydrogen Energy – 2014. – V. 39. – P. 5617-5624. https://doi.org/10.1016/j.ijhydene.2014.01.187

(28). Clarizia L., Spasiano D., Di Somma I., Marotta R., Andreozzi R., Dionysiou D.D. Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review // Int J Hydrogen Energy – 2014. – V. 39. – P. 16812-16831. https://doi.org/10.1016/j.ijhydene.2014.08.037

(29). Dincer I., Acar C. Review and evaluation of hydrogen production methods for better sustainability // Int J Hydrogen Energy – 2015. – V. 40. – P. 11094-10111. https://doi.org/10.1016/j.ijhydene.2014.12.035

(30). Kondarides D.I., Daskalaki V.M., Patsoura A., Verykios X.E. Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions // Catal Lett – 2007. – V. 122. – P. 26-32. https://doi.org/10.1007/s10562-007-9330-3

(31). Tahir M., Amin N.S. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels // Energy Convers Manage – 2013. – V. 76. – P. 194-214. https://doi.org/10.1016/j.enconman.2013.07.046

(32). Chouhan N., Ameta R., Meena R.K., Mandawat N., Ghildiyal R. Visible light harvesting Pt/CdS/Co-doped ZnO nanorods molecular device for hydrogen generation // Int J Hydrogen Energy – 2016. – V. 41. – P. 2298-2306. https://doi.org/10.1016/j.ijhydene.2015.11.019

(33). Grewe T., Meggouh M., Tuysuz H. Nanocatalysts for solar water splitting and a perspective on hydrogen economy // Chem Asian J – 2016. – V. 11. – P. 22-42. https://doi.org/10.1002/asia.201500723

(34). Acar C., Dincer I., Zamfirescu C. A review on selected heterogeneous photocatalysts for hydrogen production // Int J Energy Res – 2014. – V. 38. – P. 1903-1920. https://doi.org/10.1002/er.3211

(35). Xu Y., Xu R. Nickel-based cocatalysts for photocatalytic hydrogen production // Appl Surf Sci – 2015. – V. 351. – P. 779-793. https://doi.org/10.1016/j.apsusc.2015.05.171

(36). Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts // Appl Surf Sci – 2017. – V. 391. – P. 72- `123. https://doi.org/10.1016/j.apsusc.2016.07.030

(37). Zhu J., Zach M. Nanostructured materials for photocatalytic hydrogen production // Curr. Opin. Colloid. Interface Sci. –2009. – V. 14. – P. 260-269 https://doi.org/10.1016/j.cocis.2009.05.003

(38). Chiarello G.L., Aguirre M.H., Selli E. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2// J Catal. – 2010. – V. 273. – P. 182-190. https://doi.org/10.1016/j.jcat.2010.05.012

(39). Etacheri V., Di Valentin C., Schneider J., Bahnemann D., Pillai S.C. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments // J Photochem Photobiol C – 2015. – V. 25. – P. 1-29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003

(40). Colon G. Towards the hydrogen production by photocatalysis // Appl Catal A – 2016. – V. 518. – P. 48-59. https://doi.org/10.1016/j.apcata.2015.11.042

(41). Maeda K. Photocatalytic water splitting using semiconductor particles: history and recent developments // J Photochem Photobiol C – 2011. – V. 12. – P. 237-268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001

. Zamfirescu C., Naterer G., Dincer I. Photo-electrochemical chlorination of cuprous chloride with hydrochloric acid for hydrogen production // Int J Hydrogen Energy – 2012. – V. 37. –P. 9529-9536. https://doi.org/10.1016/j.ijhydene.2012.01.183

(43). Zamfirescu C., Dincer I., Naterer G. Analysis of a photochemical water splitting reactor with supramolecular catalysts and a proton exchange membrane // Int J Hydrogen Energy – 2011. – V. 36. – P. 11273-11281. https://doi.org/10.1016/j.ijhydene.2010.12.126

(44). Liu B., Zhao X., Terashima C., Fujishima A., Nakata K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems // Phys Chem Chem Phys – 2014. – V. 16. – P. 8751-8760. https://doi.org/10.1039/c3cp55317e

(45). Shehzad N., Tahir M., Johari K., Murugesan T., Hussain M. A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency // J CO2 Util – 2018. – V. 26. – P. 98-122. https://doi.org/10.1016/j.jcou.2018.04.026

(46). Yang X., Cao C., Hohn K. Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde // J. Catal. – 2007. –V. 252. – P. 296-302. https://doi.org/10.1016/j.jcat.2007.09.014

(47). Liu B., Zhao X., Terashima Ch., Fujishimab A., Nakata K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems // Phys. Chem. Chem. Phys. – 2014. – V. 16. – P. 8751-8760. https://doi.org/10.1039/c3cp55317e

(48). Hoffmann M.R., Martin S.T., Choi W. Environmental Applications of Semiconductor Photocatalysis // Chem. Rev. – 1995. – V. 95. – P. 69-96. https://doi.org/10.1021/cr00033a004

(49). Fujishima A., Rao T.N., Tryk D.A. Titanium Dioxide Photocatalysis // J. Photochem. Photobiol. C – 2000. – V. 1. – P. 1-11. https://doi.org/10.1016/S1389-5567(00)00002-2

(50). Villarreal T.L., Gomez R., Neumann-Spallar M., Alonso- Vante N., Salvador P. Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer. I. photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination // J. Phys. Chem. B – 2004. – V. 108. – P. 15172-15181. https://doi.org/10.1021/jp049447a

(51). Emeline A.V., Ryabchuk V.K., Serpone N. Dogmas and misconceptions in heterogeneous photocatalysis. Some enlightened reflections // J. Phys. Chem. B – 2005. – V. 109. – P. 18515-18521. https://doi.org/10.1021/jp0523367

(52). Ollis D.F. Kinetics of Liquid Phase Photocatalyzed Reactions: An illuminating approach // J. Phys. Chem. B –2005. – V. 109. – P. 2439–2444. https://doi.org/10.1021/jp040236f

Published

2019-05-25

How to Cite

Bakbolat, B., Sultanov, F., Daulbaev, C., Kuterbekov, K., & Bekmyrza, K. (2019). ТЕРМОДИНАМИКА И КИНЕТИКА ФОТОКАТАЛИЗА ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ПРИ РАСЩЕПЛЕНИИ ВОДЫ. Combustion and Plasma Chemistry, 17(2), 77–85. https://doi.org/10.18321/cpc302

Most read articles by the same author(s)