Synthesis and characterization of activated carbon from biomass for the sorption of radioactive iodine

Authors

  • M.S. Kunarbekova Satpayev University, 22, Satpayev str., Almaty, Kazakhstan
  • L.N. Seimukhanova Satpayev University, 22, Satpayev str., Almaty, Kazakhstan
  • I.O. Sapargali Satpayev University, 22, Satpayev str., Almaty, Kazakhstan
  • U.Ye. Zhantikeyev Satpayev University, 22, Satpayev str., Almaty, Kazakhstan
  • K.K. Kudaibergenov Satpayev University, 22, Satpayev str., Almaty, Kazakhstan
  • S. Azat Satpayev University, 22, Satpayev str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc22(4)331-341

Keywords:

activated carbon, chemical activation, adsorption of radionuclides, iodine, biomass

Abstract

Due to the increasing demand for electricity, building a nuclear power plant in Kazakhstan presents an effective solution. However, this development will lead to the generation of additional radioactive waste. Consequently, managing nuclear waste and synthesizing efficient sorbents becomes crucial. Carbon sorbents are commonly used in water treatment systems because they can adapt to various pollutants. Removing radionuclides, including radioactive iodine, poses challenges due to the presence of anions and molecular iodine in water and air. This study investigates the ability of biomass-based carbon sorbents to absorb iodide ions from an aqueous medium. We produced a series of activated carbons using walnut shells (WN KOH), rice husks (RH KOH), and buckwheat husks (BH KOH). The activation with KOH significantly enhanced the textural and adsorption characteristics of the sorbents. The BET method showed an increase in both specific surface area and pore volume, with values reaching 1881.83 m2/g for RH KOH, 2192.67 m2/g for WN KOH, and 1579.43 m2/g for BH KOH. Infrared (IR) spectroscopy indicated a decrease in the intensity of the -OH group peaks and the emergence of new peaks corresponding to O-H and C-O bonds. Scanning electron microscopy (SEM) images displayed a well-developed porous structure in the activated samples, and energy dispersive X-ray spectroscopy (EDX) analysis confirmed an increased oxygen content following KOH activation. A comparative analysis of sorption capacity revealed that RH KOH (qe 217 mg/g, teq 10 h) and BH KOH (qe 215 mg/g, teq 10 h) were the most effective sorbents. In contrast, the WN KOH samples required more time to reach their maximum sorption capacity (qe 190 mg/g, teq 30 h). Therefore, the KOH activation of carbon sorbents enhances their adsorption characteristics, making them promising candidates for water purification systems targeting radioactive pollutants.

References

(1). World Health Organization (2011) Guidelines for Drinking-Water Quality. Geneva, Switzerland.

(2). Dinh Chau N, Dulinski M, Jodlowski P, Nowak J, Rozanski K, Sleziak M, Wachniew P (2011) Isot Environ Health Stud 47:415-437. Crossref

(3). Jaworowski Z (1982) IAEA Bull 24: 35-39.

(4). Artioli Y (2008) Encyclopedia of Ecology: 60-65. Crossref

(5). Canner AJ, Pepper SE, Hayer M, Ogden MD (2018) Prog Nucl Energy 104:271-279.Crossref

(6). Clifford D, Vijeswarapu W, Subramonian S (1988) J Am Water Work Assoc 80:94-104. Crossref

(7). Kim KJ, Kang S, Shon JS, Hong KP (2005)Treatment of Organic Radioactive Wastes by Evaporation Utilizing DU Oxidation Apparatus.Proceedings of the Korean Nuclear Society Conference Busan, Korea.

(8). Osmanlioglu AE (2018) Nucl Eng Technol 50:886-889. Crossref

(9). Miśkiewicz A, Nowak A, Pałka J, Zakrzewska-Kołtuniewicz G (2021) Membranes 11:324. Crossref

(10). Rajendran S, Shahbaz K, Walvekar R (2016) J Eng Sci Technol 11:82-96.

(11). Mansurov ZA, Velasco LF, Lodewyckx P (2022) J Eng Phys Thermophy 95:1383-1392 Crossref

(12). Kuldeyev E, Seitzhanova M, Tanirbergenova S, Tazhu K, Doszhanov E, Mansurov Z, Azat S, Nurlybaev R, Berndtsson R (2023) Water 15:2215. Crossref

(13). Seitzhanova M, Azat S, Yeleuov M, Taurbekov A, Mansurov Z, Doszhanov E, Berndtsson R (2024)Nanomaterials 14:224. Crossref

(14). Ihsanullah Abbas A, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Sep Purif Technol 157:141-161. Crossref

(15). Petit C (2018) Curr Opin Chem Eng 20: 132-142. Crossref

(16). Zhang Z, Luo X, Liu Y, Zhou P, Ma G, Lei Z, Lei L (2015) J Taiwan Inst Chem Eng 49:206-211. Crossref

(17). Haso HW, Dubale AA, Chimdesa MA, Atlabachew M (2022) Front Mater 9: 60. Crossref

(18). Khalili NR, Vyas JD, Weangkaew W, Westfall SJ, Parulekar SJ, Sherwood R (2002) Sep Purif Technol 26:295-304. Crossref

(19). Yalçin N, Sevinç V (2000) Carbon 38:1943-1945. Crossref

(20). Hayakawa S, Matsubara S, Sumi Y, Yamamoto S, Kawamura N, Nonami T (2018) Int J Nanotechnol 15:683-688. Crossref

(21). El-Din AMS, Monir T, Sayed MA (2019) Environ.Sci Pollut Res 26:25550-25563. Crossref

(22). Njewa JB, Vunain E, Biswick T (2022) J Chem 2022:1-13. Crossref

(23). Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2012) J Radioanal Nucl Chem 297: 9-18. Crossref

(24). Pal A, Thu K, Mitra S, El-Sharkawy II, Saha BB, Kil H-S, Yoon S-H, Miyawaki J (2017) Int J Heat Mass Transf 110:7-19. Crossref

(25). Hasan MN, Shenashen MA, Hasan MM, Znad H, Awual MR (2021) Chemosphere 270:128668. Crossref

(26). Wei L, Deng W, Li S, Wu Z, Cai J, Luo (2022) J Bioresour Bioprod 7:63-72. Crossref

(27). Rashidi NA, Chai YH, Ismail IS, Othman MFH, Yusup S (2022) Biorefinery 2022:1-15. Crossref

(28). Kunarbekova M, Busquets R, Sailaukhanuly Y, Mikhalovsky SV, Toshtay K, Kudaibergenov K, Azat S (2024) J Water Process Eng 67:106174. Crossref

(29). Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M (2021) Environ Sci Pollut Res 28:9050-9066. Crossref

(30). Taurbekov A, Abdisattar A, Atamanov M, Yeleuov M, Daulbayev C, Askaruly K, Kaidar B, Mansurov Z, Castro-Gutierrez J, Celzard A, Fierro V, Atamanova T (2023) J Compos Sci 7(10): 444. Crossref

Downloads

Published

2024-12-24

How to Cite

Kunarbekova, M., Seimukhanova, L., Sapargali, I., Zhantikeyev, U., Kudaibergenov, K., & Azat, S. (2024). Synthesis and characterization of activated carbon from biomass for the sorption of radioactive iodine. Combustion and Plasma Chemistry, 22(4), 331-341. https://doi.org/10.18321/cpc22(4)331-341