Углеродные волокна на основе пека: приготовление и применение
DOI:
https://doi.org/10.18321/cpc438Ключевые слова:
Ключевые слова: углеродные волокна, каменно- угольный пек, нефтяной пек, мезофазные пеки, изотропные пеки, наноматериалыАннотация
Интерес к углеродным волокнам (УВ) обусловлен их уникальными физико-химическими, механическими и электрическими свойствами, что делает их востребованными в различных сферах деятельности. На сегодняшний день существует несколько типов углеродных волокон, большинство из которых (около 90%) производятся из полиакрилонитрила (ПАН). Несмотря на то, что углеродные волокна производятся из нескольких видов различных прекурсоров – их широкое коммерческое применение ограничено высокой себестоимостью продукта. В связи с этим многие исследовательские и инженерные группы ставят перед собой цель достичь более низкой себестоимости продукта за счет использования дешевых типов углеродного сырья. Возможным решением данной проблемы является использование угля, нефтяной и каменноугольной смол в качестве эффективного прекурсора для получения УВ. В работе рассматривается недавний прогресс в синтезе УВ с использованием различных углеродных пеков. Представлена возможность получения углеродных волокон на основе гудрона с добавлением ПАН, а также подробно описаны перспективы их применения в системах хранения энергии и различных армированных композиционных материалах.
Библиографические ссылки
(1). Mansurov Z (2020) Eurasian Chem.-Technol. J. 22(4):241–253. https://doi.org/10.18321/ectj994
(2). Lodewyckx P, Fernandez-Velasco L, Boutillara Y (2019) Eurasian Chem.-Technol. J. 21(3):193–201. https://doi.org/10.18321/ectj860
(3). Seitzhanova M, Mansurov Z, Yeleuov M, Roviello V, Di Capua R (2019) Eurasian Chem.-Technol. J. 21(2):149–156. https://doi.org/10.18321/ectj825
(4). Smagulova G, Vassilyeva N, Kaidar B, Yesbolov N, Prikhodko N, Nemkayeva R (2019) Eurasian Chem.-Technol. J. 21(3):241–245. https://doi.org/10.18321/ectj865
(5). Kaidar BB, Smagulova GT, Brahim E, Mansurov ZA (2020) Combustion and Plasma Chemistry 18(2):94–102. https://doi.org/10.18321/cpc353
(6). Kapizov O (2020) Eurasian Chem.-Technol. J. 22(4):285–293. https://doi.org/10.18321/ectj993
(7). Satayeva AR, Howell CA, Korobeinyk AV, Jandosov J, Inglezakis VJ, Mansurov ZA, Mikhalovsky SV (2018) Science of The Total Environment 630:1237–1245. https://doi.org/10.1016/j.scitotenv.2018.02.329
(8). Safarpour M, Khataee A (2019) Nanoscale Materials in Water Purification 383–430. https://doi.org/10.1016/B978-0-12-813926-4.00021-5
(9). Dias D, Don D, Jandosov J, Bernardo M, Pinto F, Fonseca I, Sanches A, Caetano P, Lyubchyk S, Lapa N (2021) Journal of Hazardous Materials 412:125201. https://doi.org/10.1016/j.jhazmat.2021.125201
(10). Zuo Q, Zhang Y, Zheng H, Zhang P, Yang H, Yu J, Mai J (2019) Chemical Engineering Journal 365:175–182. https://doi.org/10.1016/j.cej.2019.02.047
(11). Iqbal S, Khatoon H, Pandit AH, Ahmad S (2019) Materials Science for Energy Technologies 417–428. https://doi.org/10.1016/j.mset.2019.04.006
(12). Yeleuov M, Seidl C, Temirgaliyeva T, Taurbekov A, Prikhodko N, Lesbayev B, Sultanov F, Daulbayev C, Kumekov S (2020) Energies 13(18):4943. https://doi.org/10.3390/en13184943
(13). Jesús Lázaro M, Ascaso S, Pérez-Rodríguez S, Calderón JC, Gálvez ME, Jesús Nieto M, Moliner R, Boyano A, Sebastián D, Alegre C, Calvillo L, Celorrio V (2015) Comptes Rendus Chimie 18(11):1229–1241. https://doi.org/10.1016/j.crci.2015.06.006
(14). Toshiyuki K, Shin’ya O (2020) Applied Energy 269:115125. https://doi.org/10.1016/j.apenergy.2020.115125
(15). Wei Y, Horlyck J, Song M, Scott J, Amal R, Cao Q (2020) Applied Catalysis A: General 592:117418. https://doi.org/10.1016/j.apcata.2020.117418
(16). Forintos N, Czigány T (2020) Composites Part A: Applied Science and Manufacturing 105819. https://doi.org/10.1016/j.compositesa.2020.105819
(17). Yin F, Yue W, Li Y, Gao S, Zhang C, Kan H, Niu H, Wang W, Guo Y (2021) Carbon 180:274–297. https://doi.org/10.1016/j.carbon.2021.04.080
(18). Torrinha A, Morais S (2021) TrAC Trends in Analytical Chemistry 142:116324. https://doi.org/10.1016/j.trac.2021.116324
(19). Yan T, Wu Y, Yi W, Pan Z (2021) Sensors and Actuators A: Physical 327:112755. https://doi.org/10.1016/j.sna.2021.112755
(20). Akbar NS (2018) Applications of Nanocomposite Materials in Drug Delivery 649–665. https://doi.org/10.1016/B978-0-12-813741-3.00048-0
(21). Mansurov Z (2013) Eurasian Chem.-Technol. J.15(3):209–217. https://doi.org/10.18321/ectj224
(22). Han C, Zhang H, Wang F, Yu Q, Chen F, Shen D, Yang Z, Wang T, Jiang M, Deng T, Yu C (2021) Carbon 183:789–808. https://doi.org/10.1016/j.carbon.2021.07.063
(23). Henna TK, Raphey VR, Sankar R, Ameena Shirin VK, Gangadharappa HV, Pramod K (2020) International Journal of Pharmaceutics 587:119701. https://doi.org/10.1016/j.ijpharm.2020.119701
(24). Sharma DK, Bagotia N (2020) Indian Journal of Engineering & Materials Sciences 27:1127– 1135.
(25). Osman AI, Farrell C, Al-Muhtaseb AH (2020) Sci Rep 10:2563. https://doi.org/10.1038/s41598-020-59481-7
(26). Mugadza K, Stark A, Ndungu PG, Nyamori VO (2020) Materials 13(18):3945. https://doi.org/10.3390/ma13183945
(27). Smagulova GT, Vassilyeva N, Kaidar BB, Yesbolov N, Prikhod’ko NG, Supiyeva Zh, Artykbaeva MT, Mansurov ZA (2021) J Eng Phys Thermophy 94:431-436. https://doi.org/10.1007/s10891-021-02313-w
(28). Varley D, Yousaf S, Youseffi M, Mozafari M, Khurshid Z, Sefat F (2019) Advanced Dental Biomaterials 301–315. https://doi.org/10.1016/B978-0-08-102476-8.00013-X
(29). IUPAC. Compendium of Chemical Terminology, 2nd ed. Compiled by McNaught AD and Wilkinson A. Blackwell Scientific Publications, Oxford (1997) Online version (2019) created by Chalk SJ. ISBN 0-9678550-9-8
(30). Han Q, Zhang W, Han Z, Niu S, Zhang J, Wang F, Li X, Geng D, Yu G (2019) Ionics 25:5333–5340. https://doi.org/10.1007/s11581-019-03124-z
(31). Bennett SC, Johnson DJ, Johnson W (1983) J Mater Sci 18:3337–3347. https://doi.org/10.1007/BF00544159
(32). Frank E, Ingildeev D, Buchmeiser MR (2017) Structure and Properties of High-Performance Fibers, 7–30. https://doi.org/10.1016/B978-0-08-100550-7.00002-4
(33). Kadla J, Kubo S, Venditti R, Gilbert R, Compere A, Griffith W (2002) Carbon 40(15):2913–2920. https://doi.org/10.1016/S0008-6223(02)00248-8
(34). Wang S, Bai J, Innocent MT, Wang Q, Xiang H, Tang J, Zhu M (2021) Green Energy & Environment 1-28. https://doi.org/10.1016/j.gee.2021.04.006
(35). Breitenbach S, Unterweger C, Lumetzberger A (2021) J Porous Mater 28:727–739. https://doi.org/10.1007/s10934-020-01026-4
(36). Manocha LM (2001) Encyclopedia of Materials: Science and Technology 906–916. https://doi.org/10.1016/B0-08-043152-6/00174-1
(37). Wortberg G, De Palmenaer A, Beckers M, Seide G, Gries T (2015) Fibers 3(3):373–379. https://doi.org/10.3390/fib3030373
(38). De Palmenaer A, Wortberg G, Merke M, Roeding T, Gries TG, Seide GH (2017) Chemical Fibers International 67(4):204–205.
(39). Arai Y (2016) High-Performance and Specialty Fibers. https://doi.org/10.1007/978-4-431-55203-1_21
(40). Choi D, Kil HS, Lee S (2018) Carbon 142:610–649 DOI: https://doi.org/10.1016/j.carbon.2018.10.028
(41). Huson MG (2017) Structure and Properties of High-Performance Fibers 31–78. https://doi.org/10.1016/B978-0-08-100550-7.00003-6
(42). Imangazy AM, Kaidar B (2021) Chemical Journal of Kazakhstan 1(73):151–159. https://doi.org/10.51580/2021-1/2710-1185.16
(43). Sun X, Bai L, Li J, Huang L, Sun H, Gao X (2021) Carbon 182:11–22. https://doi.org/10.1016/j.carbon.2021.05.047
(44). Wen Y, Kok MDR, Tafoya JPV, Sobrido ABJ, Bell E, Gostick JT, Jervis R (2020) Journal of Energy Chemistry. https://doi.org/10.1016/j.jechem.2020.11.014
(45). Miller GC, Yu J, Joseph RM, Choudhury SR, Mecham SJ, Baird DG, Riffle JS (2017) Polymer 126:87–95. https://doi.org/10.1016/j.polymer.2017.08.023
(46). Luo Y, Qu W, Cochran E, Bai X (2021) Journal of Cleaner Production 307:127252. https://doi.org/10.1016/j.jclepro.2021.127252
(47). Zhang D, Xu T, Li C, Xu W, Wang J, Bai J (2019) Journal of CO2 Utilization 34:716–724. https://doi.org/10.1016/j.jcou.2019.09.005
(48). Ghorbani-Choghamarani A, Taherinia Z, Heidarnezhad Z, Moradi Z (2020) Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2020.10.028
(49). Xuemei Lv, Zhang Y, Wang Y, Zhang G, Zhao Y, Liu J (2021) Diamond and Related Materials 113:108265. https://doi.org/10.1016/j.diamond.2021.108265
(50). Banerjee C, Chandaliya VK, Dash PS (2021) Journal of Analytical and Applied Pyrolysis 158: 105272. https://doi.org/10.1016/j.jaap.2021.105272
(51). https://smp.uq.edu.au/pitch-drop-experiment
(52). Ko S, Kang D, Jo M-S, Ha S-J, Jeon Y-P (2021) Journal of Industrial and Engineering Chemistry 95:92–100. https://doi.org/10.1016/j.jiec.2020.12.008
(53). Gao N, Cheng B, Hou H, Zhang R (2018) Materials Letters 212:243–246. https://doi.org/10.1016/j.matlet.2017.10.074
(54). Jiang M, Sun N, Ali Soomro R, Xu B (2021) Journal of Energy Chemistry 55:34–47. https://doi.org/10.1016/j.jechem.2020.07.002
(55). Yuan Q, Bateman S, Friedrich K (2008) Journal of Thermoplastic Composite Materials 21(4):323–336. https://doi.org/10.1177/0892705708089478
(56). Shirasu K, Nagai C, Naito K (2020) Mechanical Engineering Journal 7(4):1–8. https://doi.org/10.1299/mej.19-00599
(57). Kim BJ, Kotegawa T, Eom Y, An J, Hong IP, Kato O, Yoon SH (2016) Carbon 99:649–657. https://doi.org/10.1016/j.carbon.2015.12.082
(58). Inagaki M, Kang F (2014) Materials Science and Engineering of Carbon: Fundamentals 219–525. https://doi.org/10.1016/B978-0-12-800858-4.00003-6
(59). Liu J, Chen X, Xie Q, Liang D (2020) Journal of Cleaner Production 271:122498. https://doi.org/10.1016/j.jclepro.2020.122498
(60). Choi D, Kil HS, Lee S (2019) Carbon 42:610–649. https://doi.org/10.1016/j.carbon.2018.10.028
(61). Aldosari SM, Khan M, Rahatekar S (2020) Journal of Materials Research and Technology 9(4):7786–7806. https://doi.org/10.1016/j.jmrt.2020.05.037
(62). He ZC, Shi X, Li E, Li XK (2020) Composite Structures 251:112657. https://doi.org/10.1016/j.compstruct.2020.112657
(63). Park HM, Kim GM, Lee SY, Jeon H, Kim SY, Kim M, Yang BJ (2018) Construction and Building Materials 165:484–493. https://doi.org/10.1016/j.conbuildmat.2017.12.205
(64). Torchala K, Kierzek K, Gryglewicz G (2015) Electrochimica Acta, 167:348–356. https://doi.org/10.1016/j.electacta.2015.03.153
(65). Bermudez V, Ogale AA (2020) Carbon 168:328– 336. https://doi.org/10.1016/j.carbon.2020.06.062
(66). Qin X, Lu Y, Xiao H, Wen Y, Yu T (2012) Carbon 50(12):4459–4469. https://doi.org/10.1016/j.carbon.2012.05.024
(67). Park SJ, Heo GY (2014) Carbon Fibers 210:31–66. https://doi.org/10.1007/978-94-017-9478-7_2
(68). Park MS, Jung MJ, Lee YS (2016) Journal of Industrial and Engineering Chemistry 37:277–287. https://doi.org/10.1016/j.jiec.2016.03.040
(69). Greene ML, Schwartz RW, Treleaven JW (2002) Carbon 40(8):1217–1226. https://doi.org/10.1016/S0008-6223(01)00301-3
(70). Edie DD (1998) Carbon 36(4):345–362. https://doi.org/10.1016/S0008-6223(97)00185-1
(71). Yuan G, Jin Z, Zuo X, Xue Z, Yan F, Dong Z, Li X (2018) Energy & Fuels 32(8):8329–8339. https://doi.org/10.1021/acs.energyfuels.8b01824
(72). Zhai X, Liu J, Zhang Y, Fan Q, Li Z, Zhou Y (2019) Ceramics International 45(9):11734–11738. https://doi.org/10.1016/j.ceramint.2019.03.049
(73). Zhang X, Ning S, Ma Z, Song H, Wang D, Zhang M, Yan X 156 (2020): 499-505. https://doi.org/10.1016/j.carbon.2019.09.085
(74). Wang F (2017) Chapter 6: Carbon Fibers and Their Thermal Transporting Properties. Thermal Transport in Carbon-Based Nanomaterials 135–184. https://doi.org/10.1016/B978-0-32-346240-2.00006-6
(75). Moyer K, Meng C, Marshall B, Assal O, Eaves J, Perez D, Pint CL (2019) Energy Storage Materials 24:676–681. https://doi.org/10.1016/j.ensm.2019.08.003
(76). Choi H, Seo DJ, Choi WY, Choi SW, Lee MH, Park YJ, Jung CY (2021) Journal of Power Sources 484:229291. https://doi.org/10.1016/j.jpowsour.2020.229291
(77). Pina AC, Amaya A, Marcuzzo JS, Rodrigues AC, Baldan MR, Tancredi N, Cuña A (2018) Journal of Carbon Research 4(2):24. https://doi.org/10.3390/c4020024
(78). Mandapati, Jayalakshmi, Balasubramanian, K. (2008) Int. J. Electrochem. Sci. 3:1196–1217.
(79). Yue D, Yang J, Sun B, Shi K, Zhu H, Li X (2020) Carbon 167:931. https://doi.org/10.1016/j.micromeso.2021.110972
(80). Zheng Y, Ni D, Li N, Chen W, Lu W (2021) Microporous and Mesoporous Materials 316:110972. https://doi.org/10.1016/j.micromeso.2021.110972
(81). Yang CM, Kim BH (2018) Journal of Alloys and Compounds 749:441–447. https://doi.org/10.1016/j.jallcom.2018.03.305
(82). Ni G, Qin F, Guo Z, Wang J, Shen W (2019) Electrochimica Acta 330:135270. https://doi.org/10.1016/j.electacta.2019.135270
(83). Lee HM, Kwac LK, An KH, Park SJ, Kim BJ (2016) 125:347–352. https://doi.org/10.1016/j.enconman.2016.06.006
(84). Yun SI, Kim SH, Kim DW, Kim YA, Kim BH (2019) Carbon 149:637–645. https://doi.org/10.1016/j.carbon.2019.04.105
(85). Lang F, Xing Y, Zhao Y, Zhu J, Hou XH, Zhang W (2020) Composite Structures 254:112849. https://doi.org/10.1016/j.compstruct.2020.112849
(86). Mahaviradhan N, Sivaganesan S, Padma Sravya N, Parthiban A (2021) Materials Today: Proceedings 39:743–747. https://doi.org/10.1016/j.matpr.2020.09.443
(87). Pei R, Chen G, Wang Y, Zhao M, Wu G(2018). Journal of Alloys and Compounds 756:8–18. https://doi.org/10.1016/j.jallcom.2018.04.330
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.