ПОЛУЧЕНИЕ УГЛЕРОДНЫХ ВОЛОКОН МЕТОДОМ ЭЛЕКТРОСПИННИНГ
Ключевые слова:
электроспиннинг, полимеры, наноматериалы, углеродАннотация
Электроспиннинг – универсальный метод получения непрерывных волокон диаметром от нескольких нанометров до микрометров из растворов или рaсплавов полимеров. Этот метод применим практически к любому растворимому или плавкому полимеру. Полимеры могут быть химически модифицированы различными добавками, начиная от простых частиц сажи, до комплексных соединений. Электроспиннинг представляется простым, но довольно сложным процессом, который зависит от множества молекулярных, технологических и технических параметров. Данный метод обеспечивает доступ к совершенно новым материалам, которые могут иметь сложные химические структуры. Результаты, описанные в данном обзоре, демонстрируют большой потенциал электроспиннинга в фундаментальных и прикладных исследованиях. Тем не менее, требуется больше исследований, чтобы точно контролировать все процессы при образовании различных волокн. В этом обзоре представлены обобщенные данные на основе анализа исследований по получению углеродных волокон методом электроспиннинга для их дальнейшего применения в промышленности.
Библиографические ссылки
(1). M. Holmes, Global carbon fiber market re-mains on upward trend, Reinforced Plastics – 2014 – P.38-45.
(2). Carbon fiber in the starting blocks, JEC Composites Magazine – 2015 – P.213.
(3). E. Frank, L.M. Steudle, D. Ingildeev, J.M. Spörl, M.R. Buchmeiser, Carbon fibers: precursor systems, processing, structure, and properties, Angew. Chem. Int. Ed. – 2014 – P.5262-5298.
(4). Paul J. Walsh, Zoltek Corporation. Carbon fibers, – ASM Handbook, Vol. 21, Composites. – 2001. – P.35-40.
(5). Hughes T., Chambers C. Manufacture of Carbon Filaments. – US Patent No. 405. – 1989. – P.4-20.
(6). Koyama T., Endo M.T. Structure and Growth Processes of Vapor-Grown Carbon Fibers (in Japanese). – O. Buturi, 42. – 1973. – P.200-250.
(7). Tibbetts G.G. Lengths of Carbon Fibers Grown from Iron Catalyst Particles in Natural Gas. – Journal of Crystal Growth, 73. – 1985. – P.431
(8). Benissad F., Gadelle P., Coulon M., Bon-netain L. Formation de Fibers de Carbone a Partir du Methane: I Croissance Catalytique et Epaississement Pyrolytique. – Carbon, 26. – 1988. – P.61-69.
(9). Formhals A. Artificial thread and method of producing SME filed. – 1937. – P.4-30.
(10). Nanofibers Revolutionary Material for the 3rd Millennium, http://www.nafigate.com/. – 2014. – P.2-8.
(11). Donaldson Company – http:www.donaldson.com.index.html. – 2014. – P.3-5.
(12). Elmarco Company – http://www.elmarco.com
(13). Roco M.C. Global nanotechnology devel-opment from 1991 to 2012: 3 patents, scientific publications, and effect of NSF funding, – J Nanopart Res, 2013. – P.3-10.
(14). Roco M.C., Bainbridge S.W. The new world of discovery, invention, and innovation: convergence of knowledge, technology, and society. – J Nanopart. – 2013. – P.3–9.
(15). Nanya Li, Yingguang Li, John Jelonnek, Guido Link, James Gao. A new process control method for microwave curing of carbon fiber rein-forced composites in aerospace applications. – Composites Part B: Engineering. – 2017. – P.61-70.
(16). José Manuel Moreno, Marotoa Beatriz González, Corrochano Jacinto Alonso, Azcáratea Luis Rodríguez, AnselmoAcosta. Manufacturing of lightweight aggregates with carbon fiber and mineral wastes. – Cement and Concrete Compo-sites. – 2017. – P.335-348.
(17). KapSeung Yang, Bo-Hye Kim, Seong-Ho Yoon. Pitch based carbon fibers for automotive body and electrodes. – Carbon Letters Vol. 15, No. 3. – 2014. – P.162-170.
(18). Q.R. Zheng, Z.W. Zhu, J. Chen, W.S. Yu. Preparation of carbon based getter for glass fiber core vacuum insulation panels (VIPs) used on ma-rine reefer containers. – Vacuum. – 2017. – P.111-119.
(19). Shama Rao N., Simha T.G. A., Rao K.P. and Ravi Kumar G.V.V. Competitive and cost effective. – Carbon composites are becoming. – 2015. – P.3-12.
(20). Watarai H., Teramae N., Sawada T. Interfacial Nanochemistry: Molecular Science and Engineering at Liquid-Liquid Interfaces. – Nanostructure Science and Technology. – 2005. – P.100-121.
(21). Ramakrishna S., Fujihara K., Teo W.E., Lim T.C. An Introduction to Electrospinning and Nanofibers, Singapore: World Scientific Publishing Co. – 2005. – P.2-10.
(22). BCC Research Nanofibers: Technologies and Developing Markets. – SKU, 2010. – P.99-110.
(23). Global Markets and Technologies for Nanofibers. – PRNewswire – Reportlinker.com, New York. – 2013. – P.3-15.
(24). Microfiber – new perspectives of the nonwovens industry. – www.newchemistry.ru. – 2013. – P.2-3.
(25). Matveev A.T., Afanasov I.M. Production of nanofibers by the method of electroforming. – Moscow. – 2010. – P.10-200.
(26). Rapid production of ultralong amorphous ceramicnanofibers by laser spinning – Journal Applied Physics Letters. – 2011. – P.2-8.
(27). Santana E., Kemell M. The preparation of reusable magnetic and photocatalytic composite nanofibers by electrospinning and atomic layer deposition iop publishing 20. – 2008. – P.1-10.
(28). Y. Wang, H. Zhu, B. Li, Cascaded Mach-Zehnder interferometers assembled by submicrometer PTT wires. IEEE. Photon. Technol. Lett. – 2009. – P.1115-1117.
(29). P.X.R. Zhang, Synthetic nanoscale fi-brous extracellular matrix. J. Biomed. Mater. Res., 1999 – P.60-72.
(30). P. Berndt, G. Fields, M. Tirrell, Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J. Am. Chem. Soc., – 1995. – P.9515-9522.
(31). H. Jeong, S. Lee, P. Kim, K. Suh, Stretched polymer nanohairs by nanodrawing. Nano Lett, 6, – 2006. – P.1508-1513.
(32).X. B. Xing, Y. Q. Wang, H. Zhu, B. J. Li, Nanofiber drawing and nanodevice assembly in poly (trimethylene terephthalate). Opt. Express, – 2006. – P.10815-10822.
(33).X. B. Xing, H. Zhu, Y. Q. Wang, B. J. Li, Ultra Compact photonic coupling splitters twisted by PTT nanowires. Nano.Lett. – 2008. – P.2839-2843.
(34).S. Grimm, R. Giesa, K. Sklarek, A. Langner, U. Gosele, H. W. Schmidt, and M. Steinhart. Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays. Nano Lett. – 2008. – P.1954-1959.
(35).J. R. Porter, A. Henson, K. C. Popat, poly (epsiloncaprolactone). Biodegradable, for. Nanowires, tissue. Bone, applications. Engineering, Biomaterials. – 2009. – P.780-788.
(36).A. Alemdar, M. Sain, Isolation and charac-terization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour. Technol. – 2009. – P.1664-1671.
(37).Andreas Greiner and Joachim H. Wen-dorff., Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. – 2007 – P.5670-5703.
(38).R. Vasita, D. S. Katti, Nanofibers and their applications in tissue engineering. Int. J. Nanomed., – 2006 – P.15-30.
(39).V. Beachley, X. Wen. Fabrication of nanofiber reinforced protein structures for tissue engineering. Mater. Sci. Eng. C Biol. Appl. – 2009 – P.2448-2453.
(40). Huang, Z.M.; Zhang, Y.Z.; Kotaki, M. & Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocpomposites, Composites Science and Technology – 2003 – P.2223-2253.
(41). Kaidar B., Argymbaev D., Artykbayeva M., Smagulova G., Mansurov Z.A., Synthesis of carbon fibers from bitumens of heavy oils by the method of electrospinning, IX International symposium «Combustion and plasmochemistry», Chapter 9. – 2017 – P. 97-98.
(42). R. EslamiFarsani, A. Shokuhfar, A. Sedghi, Int. J. Aerospace and Mechanical Eng. – 2007 – P.184.
(43). Soo-Jin Park and Gun-Young Heo, Precur-sors and Manufacturing of Carbon Fibers, Chapter 2, Springer Series in Materials Science. – 2015 – P.31-32.
(44). R. Bacon, US Pat 2. – 1959 – P. 957, 756.
(45). M.M. Tang, R. Bacon, Carbon 2 – 1964 – P. 211.
(46).Jiyoung Kim, Ui-Su Im, Byungrok Lee, Dong-Hyun Peck, Seong-Ho Yoon, Doo-Hwan Jung, Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition. Carbon Letters Vol. 19 – 2016. – P. 72–78.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.