Macroscopic approach to studying the structure of concentrated aqueous LiTFSI solutions
DOI:
https://doi.org/10.18321/cpc22(4)309-318Ключевые слова:
lithium-ion batteries, aqueous electrolytes, LiTFSI, water activity, hydration numbers, ionic associationАннотация
This work systematically studies the physicochemical properties of aqueous LiTFSI solutions across a wide range of concentrations. The solutions’ density, viscosity, electrical conductivity, and water activity were measured, establishing quantitative relationships between macroscopic parameters and structural characteristics of the electrolyte. Analysis of electrical conductivity, incorporating viscosity corrections, demonstrated nearly complete ionic association at high concentrations (above 10 mol/kg), with water activity reaching exceptionally low values (~0.15) at maximum solubility. The study revealed nonlinear density changes with increasing concentration, indicating substantial structural reorganization in concentrated solutions. Hydration numbers, calculated using a novel thermodynamic approach combining water activity and conductivity data, showed unexpected solvation behavior: LiTFSI exhibited higher hydration numbers than traditional lithium salts in dilute solutions despite lower TFSI− charge density, attributed to spatial trapping of water molecules by its bulky structure. This pattern inverted at higher concentrations due to increased ionic association and charge screening effects. The calculated parameters aligned well with molecular dynamics simulations, validating our macroscopic approach. The study demonstrated that standard physicochemical measurements can accurately determine electrolyte structural parameters, offering practical advantages for optimizing electrolyte compositions, particularly in systems containing polymer additives and co-solvents where molecular dynamics modeling faces significant challenges.
Библиографические ссылки
(1). Quintans De Souza G (2021) Chemical Engineering, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH) SECOND CYC:1-34.
(2). Chao D, Zhou W, Xie F, Ye C, Li H, Jaroniec M, Qiao S-Z (2024) Sci Adv 6(21):4098. Crossref
(3). Kim H, Hong J, Park K-Y, Kim H, Kim S-W, Kang K (2014) Chem Rev 114(23):11788-11827. Crossref
(4). Pasta M, Wessells CD, Huggins RA, Cui Y (2012) Nat Commun 3(1):1149. Crossref
(5). Ahn H, Kim D, Lee M, Nam KW (2023) Commun Mater: 4(1):37. Crossref
(6). Borodin O (2019) Curr Opin Electrochem 13:86-93. Crossref
(7). Zhao Y, Hu X, Stucky GD, Boettcher SW (2024) JACS 146(5):3438-3448. Crossref
(8). Xue L, Zhang Q, Huang Y, Zhu H, Xu L, Guo S, Zhu X, Liu H, Huang Y, Huang J, Lu L, Zhang S, Gu L, Liu Q, Zhu J, Xia H (2022) Adv Mater 34(13):2108541. Crossref
(9). Yang W, Yang Y, Yang H, Zhou H (2022) ACS Energy Lett 7(8):2515-2530. Crossref
(10). Li W, Dahn JR, Wainwright DS (1994) Science 264(5162):1115-1118. Crossref
(11). Deutscher RL, Florence TM, Woods R (1995) J. Power Sources 55(1):41-46. Crossref
(12). Levi MD, Shilina Y, Salitra G, Aurbach D, Guyot E, Seghir S, Lecuire JM, Boulanger C (2012) Journal of Solid State Electrochemistry 16(11):3443-3448. Crossref
(13). Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K (2015) Science 350(6263):938-943. Crossref
(14). Han J, Zhang H, Varzi A, Passerini S (2018) Chem Sus Chem 11(21): 3704-3707. Crossref
(15). Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A (2016) Nat Energy 1(10):16129. Crossref
(16). Suo L, Borodin O, Sun W, Fan X, Yang C, Wang F, Gao T, Ma Z, Schroeder M, Cresce A Von, Russell SM, Armand M, Angell A, Xu K, Wang C (2016) Zuschriften 85287:7252-7257. Crossref
(17). Chen L, Zhang J, Li Q, Vatamanu J, Ji X, Pollard TP, Cui C, Hou S, Chen J, Yang C, Ma L, Ding MS, Garaga M, Greenbaum S, Lee H-S, Borodin O, Xu K, Wang C (2020) ACS Energy Lett 5(3):968-974. Crossref
(18). Zhang H, Liu X, Li H, Hasa I, Passerini S (2021) Angew Chem Int Ed 60(2):598-616. Crossref
(19). Jiang L, Lu Y-C (2024) ACS Energy Lett 9(3):985-991. Crossref
(20). Lukatskaya MR, Feldblyum JI, Mackanic DG, Lissel F, Michels DL, Cui Y, Bao Z (2018) Energy Environ Sci 11(10):2876-2883. Crossref
(21). Monti D, Jónsson E, Palacín MR, Johansson P (2014) J Power Sources 245:630-636. Crossref
(22). Dhattarwal HS, Kashyap HK (2022) J Phys Chem B 126(28):5291-5304. Crossref
(23). Ugata Y, Shigenobu K, Tatara R, Ueno K, Watanabe M, Dokko K (2021) Phys Chem Chem Phys 23(38):21419-21436. Crossref
(24). Damaskin BB, Petrii OA, Tsirlina GA Electrochemistry (2006). 2nd ed., revised and updated. Khimiya, Moscow. P. 672.
(25). Izmailov NA (1976) Electrochemistry of solutions 3rd edition (corrected). P. 488. (In Russian)
(26). Farhat D, Lemordant D, Jacquemin J, Ghamouss F (2019) J Electrochem Soc 166:A3487-A3495. Crossref
(27). Zhigalenok Y, Abdimomyn S, Levi M, Shpigel N, Ryabicheva M, Lepikhin M, Galeyeva A, Malchik F (2024) J Mater Chem 12:33855-33869. Crossref
(28). Bakeev MI (1978) Hydration and Physicochemical Properties of Electrolyte Solutions. Nauka, Alma-Ata, Kaz SSR. P. 244 p.
(29). Malchik F, Maldybayev K, Kan T, Kokhmetova S, Chae MS, Kurbatov A, Galeyeva A, Kaupbay O, Nimkar A, Bergman G, Levi N, Zhang H, Jin Q, Lin Z, Shpigel N, Mandler D (2023) Cell Rep 4(7):101507. Crossref
(30). Malchik F, Maldybayev K, Kan T, Kokhmetova S, Kurbatov A, Galeyeva A, Tubul N, Shpigel N, Djenizian T (2022) RSC Adv 12(16):9862-9867. Crossref
(31). Bunpheng A, Sakulaue P, Hirunpinyopas W, Nueangnoraj K, Luanwuthi S, Iamprasertkun P (2023) J Electroanal Chem 944:117645. Crossref
(32). Wahab A(2011) Can J Chem 80:175-182. Crossref
(33). Borodin O, Suo L, Gobet M, Ren X, Wang F, Faraone A, Peng J, Olguin M, Schroeder M, Ding MS, Gobrogge E, von Wald Cresce A, Munoz S, Dura JA, Greenbaum S, Wang C, Xu K (2017) ACS Nano 11(10):10462-10471. Crossref
Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.