Li+–Zn2+ гибридті электролиттердің ZnǁLiFePO4 сулы аккумуляторларының коррозиясын басуына және электрохимиялық өнімділігіне синергетикалық әсерлері
DOI:
https://doi.org/10.18321/cpc23(4)467-479Кілт сөздер:
сулы мырыш-иондық аккумуляторлар, дендриттер, литий темір фосфаты, гибридті электролит, Zn анод, анодтық еру, гальваникалық тұндыруАңдатпа
Сулы мырыш-иондық батареялар (AZIBs) қауіпсіз және тұрақты энергияны сақтау үшін ерекше маңызды болып табылады. Дегенмен, мырыш анодының тұрақсыздығы, дендриттің түзілуі, сутегінің бөлінуі, коррозияның болуы ұзақ мерзімді өнімділікті шектейді. Бұл зерттеу Zn2+ және Li+ иондарының қатынасы әртүрлі гибридті электролиттерді зерттейді. 1 M ZnSO4 + 1 M Li2SO4 электролиті коррозияға қарсы токтың ең төменгі тығыздығын (0,00026 мА·см-2) тудыра отырып, заряд тасымалдау кедергісін төмендетті (Rct = 8,91 Ом) және тұрақты цикл өнімділігін (50 циклден астам 135-158 мАч/г) көрсетті. Электрохимиялық және морфологиялық талдаулар біркелкі, дендриттерсіз Zn шөгіндісін растады. Бұл нәтижелер AZIB өнімділігін арттырудағы Li+–Zn2+ гибридті электролиттерінің синергиялық әсерін көрсетеді.
Әдебиеттер тізімі
(1) A. Mahmood, Z. Bai, T. Wang, et al. Enabling high-performance multivalent metal-ion batteries: current advances and future prospects, Chem. Soc. Rev. 54 (2025) 2369-2435. Crossref
(2) K. Zhou, X. Yu, X. Dong, et al. Strategies and prospects for engineering a stable Zn metal battery: cathode, anode, and electrolyte perspectives, Acc. Chem. Res. 58 (4) (2025) 599-611. Crossref
(3) K. Jin, Y. Yu. Principles, progress, and prospects of photo-rechargeable zinc-ion batteries, J. Energy Chem. 104 (2025) 382-396. Crossref
(4) Y. Zhang, R. Cao, C. Ouyang, et al. Recent progress in alkali metal (Li/Na/K) hybrid-ion batteries: pioneering the future of energy storage, J. Mater. Chem. A. 13 (2025) 3973-3990. Crossref
(5) A.L. Lubis, F. Baskoro, T.H. Lin, et al. Redox-active high-performance polyimides as versatile electrode materials for organic lithium- and sodium-ion batteries, ACS Appl. Mater. Interfaces. 16 (2023) 48722-48735. Crossref
(6) R. Li, R. Deng, Z. Wang, et al. The challenges and perspectives of developing solid-state electrolytes for rechargeable multivalent battery, J. Solid State Electrochem. 27 (2023) 1291-1327. Crossref
(7) R. Sinha, X. Xie, Y. Yang, et al. Failure mechanisms and strategies for vanadium oxide-based cathode in aqueous zinc batteries, Adv. Energy Mater. 15 (2025) 2404815. Crossref
(8) X. Guo, S. Zhang, H. Hong, et al. Interface regulation and electrolyte design strategies for zinc anodes in high-performance zinc metal batteries, iScience. 28 (2025) 111751. Crossref
(9) J. Zhou, H. Yu, P. Qing, et al. Interfacial double-coordination effect reconstructing anode/electrolyte interface for long-term and highly reversible Zn metal anodes, J. Colloid Interface Sci. 678 (2025) 772-782. Crossref
(10) Z. Tian, G. Li, X. Chen, et al. Innovative lignin-based MOFs and COFs for biomedicine, energy storage, and environmental remediation, Adv. Compos. Hybrid Mater. 8 (2025) 1-8. Crossref
(11) Y. Wang, T. Wang, S. Bu, et al. Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells, Nat. Commun. 14 (2025) 1828. Crossref
(12) D. Rakhman, D. Batyrbekuly, B. Myrzakhmetov, et al. Polyacrylamide-based hydrogel electrolyte for modulating water activity in aqueous hybrid batteries, RSC Adv. 14 (2024) 40222-40233. Crossref
(13) S. Qiao, L. Chang, Z. Cui, et al. Tuning Zn-ion de-solvation chemistry with trace amount of additive towards stable aqueous Zn anodes, J. Colloid Interface Sci. 677 (2025) 462-471. Crossref
(14) C. Yang, P. Woottapanit, et al. A multifunctional quasi-solid-state polymer electrolyte with highly selective ion highways for practical zinc-ion batteries, Nat. Commun. 16 (2025) 183. Crossref
(15) Y. Huang, R. Guo, Z. Li, et al. Ultra-stable aqueous zinc anodes: enabling high-performance zinc-ion batteries via a ZnSiF₆-derived protective interphase, Adv. Sci. 11 (2025) 2407201. Crossref
(16) Y. Zhu, J. Yin, X. Zheng, et al. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries, Energy Environ. Sci. 14 (2021) 4463-4473. Crossref
(17) W. Li, K. Wang, M. Zhou, et al. Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte, ACS Appl. Mater. Interfaces 10 (2018) 22059-22066. Crossref
(18) X. Wu, M. Wu, W. Su, et al. High-performance aqueous Zn-organic batteries enabled by Zn–K hybrid electrolyte, J. Power Sources 644 (2025) 237057. Crossref
(19) Y. Zhang, H. Li, S. Huang, et al. Rechargeable aqueous zinc-ion batteries in MgSO₄/ZnSO₄ hybrid electrolytes, Nano-Micro Lett. 12 (2020) 60. Crossref
(20) M. Dixit, T. Hajari, B.L. Tembe. The association of Zn²⁺-SO₄²⁻ and Mg²⁺-SO₄²⁻ in aqueous MgSO₄/ZnSO₄ hybrid electrolytes: insights from all-atom molecular dynamics simulations, arXiv preprint (2024). Crossref
(21) S. Zhao, C. Li, X. Zhang, et al. An advanced Ca/Zn hybrid battery enabled by the dendrite-free zinc anode and a reversible calcification/decalcification NASICON cathode, Sci. Bull. 68 (2023) 56-64. Crossref
(22) X. Zhou, K. Ma, Q. Zhang, et al. Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al³⁺ electrolyte additive, Nano Res. 15 (2022) 8039-8047. Crossref
(23) H. Fu, S. Huang, C. Wang, et al. Exploring hybrid electrolytes for Zn metal batteries, Adv. Energy Mater. 15 (2025) 2501152. Crossref
(24) J. Hao, J. Long, B. Li, et al. Toward high performance hybrid Zn based batteries via deeply understanding their mechanism and using electrolyte additive, Adv. Funct. Mater. 29 (34) (2019) 1903605. Crossref
(25) J. Wei, P. Zhang, J. Sun, et al. Advanced electrolytes for high performance aqueous zinc ion batteries, Chem. Soc. Rev. 53 (2024) 10335-10369. Crossref
(26) J. Kong, H. Guo, Y. Li, et al. Highly improved aqueous Zn||LiMn₂O₄ hybrid ion batteries using bi-salt (ZnSO₄/Li₂SO₄) electrolyte with PEG/MnSO₄ additives, Sustain. Energy Fuels 8 (2024) 826-836. Crossref
(27) Y. Zhang, et al. Comparative degradation of LFP/LMO/NMC in aqueous electrolytes, J. Electrochem. Soc. (2024). Crossref
(28) A. Tron, Y.N. Jo, S.H. Oh, et al. Surface modification of the LiFePO₄ cathode for the aqueous rechargeable lithium-ion battery (AlF₃ coating), ACS Appl. Mater. Interfaces 9 (14) (2017) 12391-12399. Crossref
(29) X. Zhou, Y. Zhou, L. Yu, et al. Gel polymer electrolytes for wide-temperature rechargeable batteries (review), Chem. Soc. Rev. 53 (2024) 5291-5337. Crossref
(30) C. Li, et al. Boosting Li₃V₂(PO₄)₃ cathode stability using a concentrated aqueous electrolyte (Li⁺/Zn²⁺), Chem. Commun. (2021).
(31) A. Konarov, B. Myrzakhmetov, A. Rapikov, et al. Innovative hydrogel electrolytes for hybrid zinc-ion batteries, Chem. Technol. 2(88) (2025) 156-164. Crossref
(32) Z. Zhou, H. Wang, W. Yi, et al. Engineering of hydrogel electrolyte for aqueous Zn||LiFePO₄ battery on subzero-temperature adaptability, long cycles and mechanical safety, J. Power Sources 570 (2023) 233066. Crossref
(33) X. Liu, W. Xiong, J. Zheng, et al. Electrochemical performance and behavior mechanism for Zn/LiFePO₄ battery in a slightly acidic aqueous electrolyte, ChemSusChem 15 (2022) e202102631. Crossref
(34) A.K. Padhi, et al. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144 (1997) 1188. Crossref
(35) Y. Yu, J. Xie, H. Zhang, et al. High-voltage rechargeable aqueous zinc-based batteries: latest progress and future perspectives, Small Sci. 1 (2021) 2000066. Crossref



