STUDY OF NICKEL NANOPOWDERS OBTAINED BY THE METHOD OF ELECTRIC EXPLOSION OF WIRES

Authors

  • G. Partizan The Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 050040, al-Farabi ave., 71, Аlmaty, Kazakhstan
  • B.Z. Mansurov The Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • B.S. Medyanova The Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 050040, al-Farabi ave., 71, Аlmaty, Kazakhstan
  • А.B. Koshanova The Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • B.А. Aliyev Al-Farabi Kazakh National University, 050040, al-Farabi ave., 71, Аlmaty, Kazakhstan

Keywords:

nickel nanopowder, method of electric explosion of wires, scanning and transmission microscopy, crystal structure, the method of molecular mechanics.

Abstract

This article presents the results of comprehensive study on the structure and morphology of nickel nanopowders synthesized by electric explosive evaporation of metal wire. The results of scanning and transmission electron microscopy showed that nanoclusters have a spherical shape with an average diameter of 50 nm. It was revealed based on the analysis of the diffraction patterns that nanoparticles of electro-explosive nanopowders have a crystal lattice with a parameter larger than a standard cell. The results of computer experiments are in good agreement with the findings of X-ray analysis.

References

(1) Васильев О.С. Плавление, огрубление поверхности и электронные свойства нанокластеров металлов различной размерности:дис. … канд. Физ.–мат. наук: 01.04.07. – 2014. – М. – C.120.

(2) Wang H, Yuan Y, Wei L, Goh K, Yu D, Chen Y. Catalysts for Chirality Selective Synthesis of Single–Walled Carbon Nanotubes. Carbon 2015; 81:1–19. https://doi.org/10.1016/j.carbon.2014.09.063

(3) Yan Y, Miao J, Yang Zh, Xiao F, Yang HB, Liu B, Yang Y. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44:3295–3346. https://doi.org/10.1039/C4CS00492B

(4) Partizan G., Mansurov B.Z., Medyanova B.S., Aliev B.A., Xin Jiang. Synthesis of carbon nanostructures by thermal CVD on nickel nanoparticles // Journal of Engineering Physics and Thermophysics, –2015. –Vol. 88, No. 6. P. 1451–1458. https://doi.org/10.1007/s10891-015-1329-9

(5) Партизан Г., Мансуров Б.З, Медянова Б.С., Кошанова А., Алиев Б.А., Xin Jiang. Низкотемпературный синтез углеродных наноструктур на электровзрывных нанопорошках никеля // Вестник КБТУ. – 2015. –Т. 12, №3. –C. 97-103.

(6) Лернер М.И., Сваровская Н.В., Псахье С.Г., Бакина О.В. Технология получения, характеристики и некоторые области применения электровзрывных нанопорошков металлов // Российские нанотехнологии. – 2009. – Том 4. – №11–12. C. 56–68.

(7) Лернер М.И. Электровзрывные нанопорошки неорганических материалов: технология производства, характеристики, области применения: дис. …док.тех.наук: 01.04.07. – Томск: 2007. –325с.

(8) Ильин А.П. Развитие электровзрывной технологии получения нанопорошков в НИИ высоких напряжений при Томском поли- техническом университете // Известия ТПУ. – 2003. –Т. 306, №1. –C.133–139.

(9) Коршунов А.В. Размерная зависимость параметров структуры частиц электровзрывных порошков металлов // Известия Томского политехнического университета. – 2012. – Т. 320, – № 3. – С. 16–22.

(10) C. Stan Tsai. An Introduction to Computational Biochemistry. Copyright ©2002 by Wiley–Liss, Inc. pp. 285–314.

(11) Соловьев М.Е., Соловьев М.М. Компьютерная химия. –М.: СОЛОН–Пресс, 2005.

(12) Partizan G., Мansurov B.Z., Мedyanova B.S., Mansurova M.E., Аliyev B.А. Computer Simulations for Calculating of the Strain Energy in Heteroepitaxial Growing Diamond Films // Proceedings of the Annual International World Conference on Carbon (Carbon 2014), Jeju island, Korea, June 29 – July 4, –2014. –POT3–02.

(13) Nepijko S.A., Pippel E., Woltersdorf J. Dependence of lattice parameter on particle size // Physica status solidi (a). – 1980. – Vol. 61, – № 2. – P. 469–475. https://doi.org/10.1002/pssa.2210610218

(14) Boswell F. Precise Determination of Lattice Constants by Electron Diffraction and Variations in the Lattice Constants of Very Small Crystallites // Proc. Phys. Soc. – 1951. – Vol. 64, – P. 465. https://doi.org/10.1088/0370-1298/64/5/305

(15) Vook R., Onooni M. // J. Appl. Phys. – 1968. – Vol. 39, – P. 2471. https://doi.org/10.1063/1.1656581

(16) Harada J., Yao S., Ichimiya A. X–Ray Diffraction Study of Fine Gold Particles Prepared by Gas Evaporation Technique. I. General Feature // J. Phys. Soc. Japan. – 1980. – Vol. 48, – P. 1625. https://doi.org/10.1143/JPSJ.48.1625

(17) Structure of Copper Microclusters Isolated in Solid Argon / P. Montano, G. Shenoy, E. Alp et al. // Phys. Rev. Letters. – 1986. – Vol. 56, – No. 19. – P. 2076. https://doi.org/10.1103/PhysRevLett.56.2076

(18) Onodera S. Lattice parameters of fine copper and silver particles // Journal of the Physics Society Japan. – 1992. – Vol. 61, – No. 7. – P. 2190–2193. https://doi.org/10.1143/JPSJ.61.2190

(19) Solliard C., Flueli M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum // Surface Science. – 1985. – Vol. 156, – P. 487–494. https://doi.org/10.1016/0039-6028(85)90610-7

(20) Schamp C. T., Jesser W. A. On the measurement of lattice parameters in a collection of nanoparticles by transmission electron diffraction // Ultramicroscopy. – 2005. – Vol. 103, – No. 2. – P. 165–172. https://doi.org/10.1016/j.ultramic.2004.11.007

Downloads

Published

2016-02-10

How to Cite

Partizan, G., Mansurov, B., Medyanova, B., Koshanova А., & Aliyev, B. (2016). STUDY OF NICKEL NANOPOWDERS OBTAINED BY THE METHOD OF ELECTRIC EXPLOSION OF WIRES. Combustion and Plasma Chemistry, 14(1), 27-34. https://cpc-journal.kz/index.php/cpcj/article/view/280