Nanofibrous biologically soluble scaffolds as an effective drug delivery system

Authors

  • A. Kenzhebayeva Institute of combustion problems, Bogenbai Batyr Street, 172, Almaty, Kazakhstan; Satpayev University, Satpayev Street, 22, Almaty, Kazakhstan
  • B. Bakbolat Institute of combustion problems, Bogenbai Batyr Street, 172, Almaty, Kazakhstan
  • F. Sultanov Institute of combustion problems, Bogenbai Batyr Street, 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • Ch. Daulbaev Institute of combustion problems, Bogenbai Batyr Street, 172, Almaty, Kazakhstan; Nazarbayev University, 53, Kabanbay Batyr ave., Nur- Sultan, Kazakhstan
  • Z. Mansurov Institute of combustion problems, Bogenbai Batyr Street, 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • М. Алдашева S.D. Asfendiyarov, Kazakh National Medical University, Tole bi Street, 94, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc444

Keywords:

electrospinning, hydroxyapatite, biologically soluble scaffolds, fibers, drugs.

Abstract

In this article, the synthesis of biocompatible fibrous scaffolds with antimicrobial properties based on polycaprolactone/hydroxyapatite/ amoxicillin and study of their surface morphology, antimicrobial effect, and drug release are discussed. Hydroxyapatite (1–2 μm, 97%) synthesized from biologically waste material (eggshell) was added to the composite scaffolds as a bone-replacement material. The scaffolds’ antimicrobial properties were evaluated against S.aureus and E.faecalis. The scaffolds possessed a sustained drug release from the scaffolds amounted to about 94% of the antibiotic’s total weight over a 4-week observation period. Agar diffusion confirmed the antimicrobial properties of the scaffolds against specific bacteria.

References

(1). Michot B, Casey SM, Gibbs JL (2020) Journal of Endodontics 46:950–956. https://doi.org/10.1016/j.joen.2020.03.010

(2). Mirsasaani SS, Hemati M, Dehkord ES, Yazdi GT, Poshtiri DA (2019) in: Nanobiomaterials in Clinical Dentistry 19–37. https://doi.org/10.1016/B978-0-12-815886-9.00002-4

(3). Navarro-Suarez S, Flores-Palma A, Flores-Ruiz R, Gutiérrez-Pérez JL, Torres-Lagares D (2018) in: Nanobiomaterials 297–318. https://doi.org/10.1016/B978-0-08-100716-7.00011-8

(4). Chen Y, Li X, Wu J, Lu W, Xu W, Wu B (2021) Journal of Dental Sciences 16:318–326. https://doi.org/10.1016/j.jds.2020.03.007

(5). Daghrery A, Aytac Z, Dubey N, Mei L, Schwendeman A, Bottino MC (2020) Colloids and Surfaces B: Biointerfaces 191:111011. https://doi.org/10.1016/j.colsurfb.2020.111011

(6). Vaseenon S, Chattipakorn N, Chattipakorn SC (2020) Archives of Oral Biology 109:104574. https://doi.org/10.1016/j.archoralbio.2019.104574

(7). Dzeletovic B, Aleksic N, Radak D, Stratimirovic D, Djukic L, Stojic D (2020) Journal of Endodontics 46:358–363. https://doi.org/10.1016/j.joen.2019.12.008

(8). Cameron R, Claudia E, Ping W, Erin S, Ruparel NB (2019) Journal of Endodontics 45:1119– 1125. https://doi.org/10.1016/j.joen.2019.12.008

(9). Ruksakiet K, Hanák L, Farkas N, Hegyi P, Sadaeng W, Czumbel LM, Sangngoen T, Garami A, Mikó A, Varga G, Lohinai Z (2020) Journal of Endodontics 46:1032–1041. https://doi.org/10.1016/j.joen.2020.05.002

(10). Ye W, Yeghiasarian L, Cutler CW, Bergeron BE, Sidow S, Xu HHK, Niu L, Ma J, Tay FR (2019) Journal of Dentistry 91:103231. https://doi.org/10.1016/j.jdent.2019.103231

(11). Zeng C, Meghil MM, Miller M, Gou Y, Cutler CW, Bergeron BE, Niu L, Ma J, Tay FR (2018) Journal of Dentistry 72:71–75. https://doi.org/10.1016/j.jdent.2018.03.008

(12). Bordea IR, Hanna R, Chiniforush N, Grădinaru E, Câmpian RS, Sîrbu A, Amaroli A, Benedicenti S (2020) Photodiagnosis and Photodynamic Therapy 29:101611. https://doi.org/10.1016/j.pdpdt.2019.101611

(13). AlShwaimi E, Bogari D, Ajaj R, Al-Shahrani S, Almas K, Majeed A (2016) Journal of Endodontics 42:1588–1597. https://doi.org/10.1016/j.joen.2016.08.001

(14). Karczewski A, Feitosa SA, Hamer EI, Pankajakshan D, Gregory RL, Spolnik KJ, Bottino MC (2018) Journal of Endodontics 44:155–162. https://doi.org/10.1016/j.joen.2017.08.024

(15). Urena-Saborio H, Rodríguez G, Madrigal- Carballo S, Gunasekaran S (2020) Materialia 11:100687. https://doi.org/10.1016/j.mtla.2020.100687

(16). Yu X, Wang T, Yin W, Zhang Y (2019) International Journal of Hydrogen Energy 44:2704–2710. https://doi.org/10.1016/j.ijhydene.2018.11.221

(17). Bottino MC, Pankajakshan D, Nör JE (2017) Dental Clinics of North America 61:689–711. https://doi.org/10.1016/j.cden.2017.06.009

(18). Paula AB, Laranjo M, Marto CM, Paulo S, Abrantes AM, Casalta-Lopes J, Marques-Ferreira M, Botelho MF, Carrilho E (2018) Journal of Evidence Based Dental Practice 18:298–314. https://doi.org/10.1016/j.jebdp.2018.02.002

(19). Zhang W, Zheng Y, Liu H, Zhu X, Gu Y, Lan Y, Tan J, Xu H, Guo R (2019) Materials Science and Engineering:C 103:109736. https://doi.org/10.1016/j.msec.2019.05.021

(20). Chiang YC, Chang HH, Wong CC, Wang YP, Wang YL, Huang WH, Lin CP (2016) Dental Materials 32:1197–1208. https://doi.org/10.1016/j.dental.2016.06.013

(21). Alliot-Licht B, Jean A, Gregoire M (1994) Archives of Oral Biology 39:481–489. https://doi.org/10.1016/0003-9969(94)90144-9

(22). Daulbayev C, Mansurov Z, Mitchell G, Zakhidov A (2018) Eurasian Chem. Tech. J. 20:119–124. https://doi.org/10.18321/ectj690

(23). Su¨bay RK, Aşci S (1993) Oral Surgery, Oral Medicine, Oral Pathology 76:485–492. https://doi.org/10.1016/0030-4220(93)90018-Y

(24). Sultanov F, Daulbayev C, Bakbolat B, Daulbayev O, Bigaj M, Mansurov Z, Kuterbekov K, Bekmyrza K (2019) Chemical Physics Letters 737:136821. https://doi.org/10.1016/j.cplett.2019.136821

(25). Daulbaev CB, Dmitriev TP, Sultanov FR, Mansurov ZA, Aliev ET (2017) J Eng Phys Thermophy. 90:1115–1118. https://doi.org/10.1007/s10891-017-1665-z

(26). Rodríguez-Tobías H, Morales G, Grande D (2019) Materials Science and Engineering: C 101:306– 322. https://doi.org/10.1016/j.msec.2019.03.099

(27). Mohandesnezhad S, Pilehvar-Soltanahmadi Y, Alizadeh E, Goodarzi A, Davaran S, Khatamian M, Zarghami N, Samiei M, Aghazadeh M, Akbarzadeh A (2020) Materials Chemistry and Physics 252:123152. https://doi.org/10.1016/j.matchemphys.2020.123152

(28). Ma Y, Wang A, Li J, li Q, Han Q, Chen Y, Wang S, Zheng X, Cao H, Bai S (2020) Colloids and Surfaces A: Physicochemical and Engineering Aspects 596:124740. https://doi.org/10.1016/j.colsurfa.2020.124740

(29). Safronova TV, Selezneva II, Tikhonova SA, Kiselev AS, Davydova GA, Shatalova TB, Larionov DS, Rau JV (2020) Bioactive Materials 5:423– 427. https://doi.org/10.1016/j.bioactmat.2020.03.007

(30). Vahdat A, Ghasemi B, Yousefpour M (2020) South African Journal of Chemical Engineering 33:90–94. https://doi.org/10.1016/j.sajce.2020.05.007

(31). Kakiage M, Oda S (2019) Materials Letters 248:114–118. https://doi.org/10.1016/j.matlet.2019.03.138

(32). Abdal-hay A, Abbasi N, Gwiazda M, Hamlet S, Ivanovski S (2018) European Polymer Journal 105:257–264. https://doi.org/10.1016/j.eurpolymj.2018.05.034

Published

2021-10-12

How to Cite

Kenzhebayeva, A., Bakbolat, B., Sultanov, F., Daulbaev, C., Mansurov, Z., & Алдашева, М. (2021). Nanofibrous biologically soluble scaffolds as an effective drug delivery system. Combustion and Plasma Chemistry, 19(3), 209–217. https://doi.org/10.18321/cpc444