Preparation of highly porous kaolin by thermal and acidic activation

Authors

  • A.K. Ospanova Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • Zh.B. Bekissanova Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • B. Baltabayeva Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • D.T. Rakhmatullayeva Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc443

Keywords:

kaolin, acid and thermal activation, tetraethoxylane, specific surface area

Abstract

Kazakhstan kaolin is characterized by high chemical, thermal and mechanical stability, and is an environmentally safe and cheap domestic clay mineral. However, the specific surface area of natural kaolin does not exceed 17-20 m2/g and it is, therefore, advantageous to modify it to improve surface and adsorption characteristics. A method of producing a highly porous carrier based on Kazakhstan kaolin has been developed. Kaolin is previously acid activated with 10% phosphoric acid at 90-100 oC and further thermal modification
at 500 oC to increase specific surface area. To obtain highly porous kaolin, the Staubert method was used, which is based on the hydrolysis of silicon alkoxides in an aqueous-alcoholic medium. Kaolin samples, after acid modification, were treated with oligosilicate at a weight ratio of modified kaolin: organic polymer: tetraethoxysilane of 1:1:3 until a uniform mass was obtained, followed by thermoactivation at 550 oC. Polyethylene glycol in 4000 g/mol was used as the organic polymer for the tetraethoxysilane hydrolysis reaction. The specific surface area of the modified kaolin is increased from substantially 13,453 to 616,831
m2/g. The obtained composite material can be used as a platform for producing nanocatalysts in chemical technology, as a highly porous sorbent for concentrating, extracting and neutralizing toxic and radioactive metal ions from industrial wastewater, and as a carrier for medicinal substances in the pharmaceutical industry.

References

(1). Savic IM Stojiljkovic ST, Savic IM, Gajic D (2014) Clays Clay Miner. Geol. Orig. Mech. Prop. Ind. Appl. 1:379–402.

(2). Varga G (2007) Epa. – J. Silic. Based Compos. Mater. 59(1):6–9. https://doi.org/10.1016/S0958-2118(07)70217-3

(3). Awad ME, Galindo A, Setti M, El-Rahmany MM, Iborra CV (2017) Int. J. Pharm. Elsevier. 533(1):34–48. DOI:10.1016/j. ijpharm.2017.09.056

(4). Bergaya F, Beneke K, Berry RW, Lagaly G, Tankersley KB (2013) Developments in Clay Science 5:819-855. https://doi.org/10.1016/B978-0-08-098258-8.00028-6

(5). Carretero MI (2002) Appl. Clay Sci. 21(3–4):155– 163. https://doi.org/10.1016/S0169-1317(01)00085-0

(6). Khoury HN (2019) Arab. J. Geosci. 12(23):706. https://doi.org/10.1007/s12517-019-4882-2

(7). Zaitseva LA, Erokhin SN, Donskikh VV, Ferapontov YuA, Putin SB (2016) A method of obtaining block-cellular filters-sorbents [Sposob polucheniya blochno-yacheistyh fil’trov-sorbentov] Patent of the Russian Federation No. 2664083.

(8). Carretero MI, Gomes CSF, Tateo F (2013) Handbook of Clay Science 5:711–764. https://doi.org/10.1016/B978-0-08-098259-5.00025-1

(9). Annenkov VV, Pal’shin VA, Verkhozina ON, Larina LI, Danilovtseva EN (2015) Mater. Chem. Phys. Elsevier B.V. 165:227–234. https://doi.org/10.1016/j.matchemphys.2015.09.022

(10). Sakipova ZB, Karaubaeva AA, Ibragimova LN, Orynbekova SO, Mukash AM (2016) A method of obtaining micronized powder of kaolinite clay for use in pharmacy, medicine, veterinary medicine and cosmetology [Sposob polucheniya mikronizirovannogo poroshka kaolinitovoj gliny dlya primeneniya v farmacii, medicine, veterinarii i kosmetologii] No.1787.

(11). Adekeye DK, Aremu OI, Fadunmade EO, Araromi AA, Odeniyi I, Adedotun IS, Ajenikoko MK (2020) Biomed. J. Sci. Tech. Res. 30(5):23714–23722.

(12). Hajjaji M, Arfaoui H (2009) Appl. Clay Sci. 46:418–421. https://doi.org/10.1016/j.clay.2009.09.010

(13). Tyagi B, Chudasama C, Jasra RV Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 64(1):273–278. https://doi.org/10.1016/j.saa.2005.07.018

(14). Ibrahim SS, Selim AQ (2012) Physicochem. Probl. Miner. Process. 48(2):413 424.

(15). Zhao H, Zhou CH, Wu LM, Lou JY, Li N, Yang HM, Tong DS, Yu WH (2013) Appl. Clay Sci. 74:154– 162. https://doi.org/10.1016/j.clay.2012.09.011

(16). Bhattacharyya K, Gupta S (2007) J. Colloid Interface Sci. 310(2):411–424. https://doi.org/10.1016/j.jcis.2007.01.080

(17). Tantawy MA, Alomari AA (2019) Orient. J. Chem. 35(3):1013–1021. https://doi.org/10.13005/ojc/350313

(18). Timofeeva MN, Panchenko VN, Volcho KP, Zakusin SV, Krupskaya VV, Gil A, Mikhalchenko OS, Vicente MA (2016) Journal Mol. Catal. A, Chem. Elsevier B.V. 414:160–166. https://doi.org/10.1016/j.molcata.2016.01.010

(19). Xia Y, Li F, Jiang Y, Xia M, Xue B, Li Y (2014) Appl. Surf. Sci. Elsevier B.V. 303:290–296. https://doi.org/10.1016/j.apsusc.2014.02.169

(20). Wang S, Lee YN, Nam H, Nam H, Kim HK (2019) J. Environ. Chem. Eng. Elsevier B.V. 7(6):103481. https://doi.org/10.1016/j.jece.2019.103481

(21). Masalov VM, Sukhinina NS, Emelchenko GA (2011) Physics of Solids [Fizika Tverdogo Tela] 53(6):1072.

(22). Ospanova AK, Kubasheva ZhB, Savdenbekova,BE, Baltabaeva BK (2021) A method of obtaining a highly porous carrier based on kaolin [Sposob polucheniya vysokoporistogo nositelya na osnove kaolina] Patent of the Kazakhstan No.5837.

(23). Srasra E, Bergaya F, Fripiat JJ (1994) Clays Clay Miner. 42(3):237–241. https://doi.org/10.1346/CCMN.1994.0420301

(24). Madejová J, Janek M, Komadel P, Herbert H-J, Moog HC (2002) Appl. Clay Sci. Elsevier. 20(6):255–271. https://doi.org/10.1016/S0169-1317(01)00067-9

(25). Keller WD, Pickett (1977) Earth-Science Rev. Elsevier. 13(2):197–199. https://doi.org/10.1016/0012-8252(77)90028-9

Published

2021-10-12

How to Cite

Ospanova, A., Bekissanova, Z., Baltabayeva, B., & Rakhmatullayeva, D. (2021). Preparation of highly porous kaolin by thermal and acidic activation. Combustion and Plasma Chemistry, 19(3), 199–207. https://doi.org/10.18321/cpc443