One-stage synthesis of 1,1-diethoxyethane from ethanol using copper-containing catalysts
DOI:
https://doi.org/10.18321/cpc442Keywords:
1,1-diethoxyethane, ethanol, catalyst, carrier, the method of preparation.Abstract
The conversion of ethanol on low-percentage copper-containing catalysts at temperatures of 300 oC and 350 oC was studied. γ-Al2O3, SiO2 and HZSM-5 were studied as the carrier of the active phase. It is shown that the main direction of ethanol conversion on low percentage copper-containing catalysts is its dehydrogenation and subsequent conversion of the resulting products into 1,1-diethoxyethane. Among the studied catalysts (1 wt.% CuO/Al2O3, 1 wt.% CuO/SiO2 and 1 wt.% CuO/ HZSM-5 the most active in the production of 1,1-diethoxyethane was 1 wt.% CuO/Al2O3, modification of it with cerium oxide led to an increase in its activity in the formation of 1,1-diethoxyethane, at the reaction temperature of 350 oС, the yield of the target product was 27 vol.%. The results showed that the modification of CuO/Al2O3 leads to an increase in the catalytic activity of the sample.
References
(1). Rass-Hansen J, Falsig H, Jоrgensen B, Christensen CH (2007) Chemical Technology and Biotechnology 82:329-333. https://doi.org/10.1002/jctb.1665
(2). Bauer JC, Veith GM, Allard LF, Oyola Y, Overbury SH, Dai S (2012) ACS Catalys 2(12):2537-2546. https://doi.org/10.1021/cs300551r
(3). Gole JL, White MJ (2001) Journal of Catalysis 204:249-252. https://doi.org/10.1006/jcat.2001.3335
(4). Nielsen M, Junge H, Kammer A, Beller M (2012) Angewandte Chemie International Edition 51:5711-5713. https://doi.org/10.1002/anie.201200625
(5). Lippits MJ, Nieuwenhuys BE (2010) Catalysis Today 154:127-132. https://doi.org/10.1016/j.cattod.2010.03.019
(6). Ogo S, Onda A, Iwasa Y, Hara K, Fukuoka A, Yanagisawa K (2012) Journal of Catalysi 296:24-30. https://doi.org/10.1016/j.jcat.2012.08.019
(7). Sun J, Zhu K, Gao F, Wang C, Liu J, Peden CHF, Wang Y (2011) Journal of the American Chemical Society 133:11096-11099. https://doi.org/10.1021/ja204235v
(8). Liu H, Iglesia E (2005) Journal of Physical Chemistry 109:2155-2163. https://doi.org/10.1021/jp0401980
(9). Bueno AC, Gonçalves JA, Gusevskaya EV (2007) Applied Catalysis A: General 329:1-6. https://doi.org/10.1016/j.apcata.2007.06.008
(10). Thavornprasert KA, Menorval BdlGd, Capron M, Gornay J (2012) Biofuels 3:25-34. https://doi.org/10.4155/bfs.11.144
(11). Silva VMTM, Rodrigues AE (2005) AIChE Journal 51 (10):2752-2768. https://doi.org/10.1002/aic.10531
(12). Silva VMTM, Rodrigues AE (2001) Chemical Engineering and Science 56:1255-1263. https://doi.org/10.1016/S0009-2509(00)00347-X
(13). Nord KE, Haupt D (2005) Environmental Science and Technology 39:6260-6265. https://doi.org/10.1021/es048085h
(14). Silva VMTM, Rodrigues AE (2004) AIChE Journal 48:625-634. https://doi.org/10.1002/aic.690480319
(15). Beregovtsova NG, Sharipov VI, Baryshnikov SV, Grishechko LI, Vos’merikov AV, Kuznetcov BN (2014) Journal of Siberian Federal University 7:242-251.
(16). De Waele J, Galvita VV, Poelman H, Gabrovska M, Nikolova D, Damyanova S, Thybaut JW (2019) Applied Catalysis A: General 591:117401. https://doi.org/10.1016/j.apcata.2019.117401