Pitch-based carbon fibers: preparation and applications

Authors

  • B.B. Kaidar Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • G.T. Smagulova Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • A.A. Imash Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • S. Zhaparkul Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • Z.A. Mansurov Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc438

Keywords:

сarbon fibers, coal tar pitch, petroleum pitch, mesophase pitches, isotropic pitches, nanomaterials.

Abstract

Attention to carbon fiber (CF) conditioned by their unique physicochemical, mechanical and electrical properties, which makes them in demand in various fields of activity. Today there are several kinds of carbon fibers, most of which (about 90%) are made of polyacrylonitrile (PAN). Even though carbon fibers are produced from several types of different precursors, their widespread commercial use is limited by the high cost of the product. Has, many research and engineering groups sought to reduce the cost of production by using cheap carbon raw materials. A likely solution to this problem is the exploitation of coal, petroleum, and coal tar as an effective progenitor for CF production. This review discusses neoteric accomplishment in CF synthesis using various carbon pitches. The possibility of obtaining carbon fibers based on resin with the addition of PAN is presented, and the prospects for their use in energy storage systems and various reinforced composite materials are described in detail.

References

(1). Mansurov Z (2020) Eurasian Chem.-Technol. J. 22(4):241–253. https://doi.org/10.18321/ectj994

(2). Lodewyckx P, Fernandez-Velasco L, Boutillara Y (2019) Eurasian Chem.-Technol. J. 21(3):193–201. https://doi.org/10.18321/ectj860

(3). Seitzhanova M, Mansurov Z, Yeleuov M, Roviello V, Di Capua R (2019) Eurasian Chem.-Technol. J. 21(2):149–156. https://doi.org/10.18321/ectj825

(4). Smagulova G, Vassilyeva N, Kaidar B, Yesbolov N, Prikhodko N, Nemkayeva R (2019) Eurasian Chem.-Technol. J. 21(3):241–245. https://doi.org/10.18321/ectj865

(5). Kaidar BB, Smagulova GT, Brahim E, Mansurov ZA (2020) Combustion and Plasma Chemistry 18(2):94–102. https://doi.org/10.18321/cpc353

(6). Kapizov O (2020) Eurasian Chem.-Technol. J. 22(4):285–293. https://doi.org/10.18321/ectj993

(7). Satayeva AR, Howell CA, Korobeinyk AV, Jandosov J, Inglezakis VJ, Mansurov ZA, Mikhalovsky SV (2018) Science of The Total Environment 630:1237–1245. https://doi.org/10.1016/j.scitotenv.2018.02.329

(8). Safarpour M, Khataee A (2019) Nanoscale Materials in Water Purification 383–430. https://doi.org/10.1016/B978-0-12-813926-4.00021-5

(9). Dias D, Don D, Jandosov J, Bernardo M, Pinto F, Fonseca I, Sanches A, Caetano P, Lyubchyk S, Lapa N (2021) Journal of Hazardous Materials 412:125201. https://doi.org/10.1016/j.jhazmat.2021.125201

(10). Zuo Q, Zhang Y, Zheng H, Zhang P, Yang H, Yu J, Mai J (2019) Chemical Engineering Journal 365:175–182. https://doi.org/10.1016/j.cej.2019.02.047

(11). Iqbal S, Khatoon H, Pandit AH, Ahmad S (2019) Materials Science for Energy Technologies 417–428. https://doi.org/10.1016/j.mset.2019.04.006

(12). Yeleuov M, Seidl C, Temirgaliyeva T, Taurbekov A, Prikhodko N, Lesbayev B, Sultanov F, Daulbayev C, Kumekov S (2020) Energies 13(18):4943. https://doi.org/10.3390/en13184943

(13). Jesús Lázaro M, Ascaso S, Pérez-Rodríguez S, Calderón JC, Gálvez ME, Jesús Nieto M, Moliner R, Boyano A, Sebastián D, Alegre C, Calvillo L, Celorrio V (2015) Comptes Rendus Chimie 18(11):1229–1241. https://doi.org/10.1016/j.crci.2015.06.006

(14). Toshiyuki K, Shin’ya O (2020) Applied Energy 269:115125. https://doi.org/10.1016/j.apenergy.2020.115125

(15). Wei Y, Horlyck J, Song M, Scott J, Amal R, Cao Q (2020) Applied Catalysis A: General 592:117418. https://doi.org/10.1016/j.apcata.2020.117418

(16). Forintos N, Czigány T (2020) Composites Part A: Applied Science and Manufacturing 105819. https://doi.org/10.1016/j.compositesa.2020.105819

(17). Yin F, Yue W, Li Y, Gao S, Zhang C, Kan H, Niu H, Wang W, Guo Y (2021) Carbon 180:274–297. https://doi.org/10.1016/j.carbon.2021.04.080

(18). Torrinha A, Morais S (2021) TrAC Trends in Analytical Chemistry 142:116324. https://doi.org/10.1016/j.trac.2021.116324

(19). Yan T, Wu Y, Yi W, Pan Z (2021) Sensors and Actuators A: Physical 327:112755. https://doi.org/10.1016/j.sna.2021.112755

(20). Akbar NS (2018) Applications of Nanocomposite Materials in Drug Delivery 649–665. https://doi.org/10.1016/B978-0-12-813741-3.00048-0

(21). Mansurov Z (2013) Eurasian Chem.-Technol. J.15(3):209–217. https://doi.org/10.18321/ectj224

(22). Han C, Zhang H, Wang F, Yu Q, Chen F, Shen D, Yang Z, Wang T, Jiang M, Deng T, Yu C (2021) Carbon 183:789–808. https://doi.org/10.1016/j.carbon.2021.07.063

(23). Henna TK, Raphey VR, Sankar R, Ameena Shirin VK, Gangadharappa HV, Pramod K (2020) International Journal of Pharmaceutics 587:119701. https://doi.org/10.1016/j.ijpharm.2020.119701

(24). Sharma DK, Bagotia N (2020) Indian Journal of Engineering & Materials Sciences 27:1127– 1135.

(25). Osman AI, Farrell C, Al-Muhtaseb AH (2020) Sci Rep 10:2563. https://doi.org/10.1038/s41598-020-59481-7

(26). Mugadza K, Stark A, Ndungu PG, Nyamori VO (2020) Materials 13(18):3945. https://doi.org/10.3390/ma13183945

(27). Smagulova GT, Vassilyeva N, Kaidar BB, Yesbolov N, Prikhod’ko NG, Supiyeva Zh, Artykbaeva MT, Mansurov ZA (2021) J Eng Phys Thermophy 94:431-436. https://doi.org/10.1007/s10891-021-02313-w

(28). Varley D, Yousaf S, Youseffi M, Mozafari M, Khurshid Z, Sefat F (2019) Advanced Dental Biomaterials 301–315. https://doi.org/10.1016/B978-0-08-102476-8.00013-X

(29). IUPAC. Compendium of Chemical Terminology, 2nd ed. Compiled by McNaught AD and Wilkinson A. Blackwell Scientific Publications, Oxford (1997) Online version (2019) created by Chalk SJ. ISBN 0-9678550-9-8

(30). Han Q, Zhang W, Han Z, Niu S, Zhang J, Wang F, Li X, Geng D, Yu G (2019) Ionics 25:5333–5340. https://doi.org/10.1007/s11581-019-03124-z

(31). Bennett SC, Johnson DJ, Johnson W (1983) J Mater Sci 18:3337–3347. https://doi.org/10.1007/BF00544159

(32). Frank E, Ingildeev D, Buchmeiser MR (2017) Structure and Properties of High-Performance Fibers, 7–30. https://doi.org/10.1016/B978-0-08-100550-7.00002-4

(33). Kadla J, Kubo S, Venditti R, Gilbert R, Compere A, Griffith W (2002) Carbon 40(15):2913–2920. https://doi.org/10.1016/S0008-6223(02)00248-8

(34). Wang S, Bai J, Innocent MT, Wang Q, Xiang H, Tang J, Zhu M (2021) Green Energy & Environment 1-28. https://doi.org/10.1016/j.gee.2021.04.006

(35). Breitenbach S, Unterweger C, Lumetzberger A (2021) J Porous Mater 28:727–739. https://doi.org/10.1007/s10934-020-01026-4

(36). Manocha LM (2001) Encyclopedia of Materials: Science and Technology 906–916. https://doi.org/10.1016/B0-08-043152-6/00174-1

(37). Wortberg G, De Palmenaer A, Beckers M, Seide G, Gries T (2015) Fibers 3(3):373–379. https://doi.org/10.3390/fib3030373

(38). De Palmenaer A, Wortberg G, Merke M, Roeding T, Gries TG, Seide GH (2017) Chemical Fibers International 67(4):204–205.

(39). Arai Y (2016) High-Performance and Specialty Fibers. https://doi.org/10.1007/978-4-431-55203-1_21

(40). Choi D, Kil HS, Lee S (2018) Carbon 142:610–649 DOI: https://doi.org/10.1016/j.carbon.2018.10.028

(41). Huson MG (2017) Structure and Properties of High-Performance Fibers 31–78. https://doi.org/10.1016/B978-0-08-100550-7.00003-6

(42). Imangazy AM, Kaidar B (2021) Chemical Journal of Kazakhstan 1(73):151–159. https://doi.org/10.51580/2021-1/2710-1185.16

(43). Sun X, Bai L, Li J, Huang L, Sun H, Gao X (2021) Carbon 182:11–22. https://doi.org/10.1016/j.carbon.2021.05.047

(44). Wen Y, Kok MDR, Tafoya JPV, Sobrido ABJ, Bell E, Gostick JT, Jervis R (2020) Journal of Energy Chemistry. https://doi.org/10.1016/j.jechem.2020.11.014

(45). Miller GC, Yu J, Joseph RM, Choudhury SR, Mecham SJ, Baird DG, Riffle JS (2017) Polymer 126:87–95. https://doi.org/10.1016/j.polymer.2017.08.023

(46). Luo Y, Qu W, Cochran E, Bai X (2021) Journal of Cleaner Production 307:127252. https://doi.org/10.1016/j.jclepro.2021.127252

(47). Zhang D, Xu T, Li C, Xu W, Wang J, Bai J (2019) Journal of CO2 Utilization 34:716–724. https://doi.org/10.1016/j.jcou.2019.09.005

(48). Ghorbani-Choghamarani A, Taherinia Z, Heidarnezhad Z, Moradi Z (2020) Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2020.10.028

(49). Xuemei Lv, Zhang Y, Wang Y, Zhang G, Zhao Y, Liu J (2021) Diamond and Related Materials 113:108265. https://doi.org/10.1016/j.diamond.2021.108265

(50). Banerjee C, Chandaliya VK, Dash PS (2021) Journal of Analytical and Applied Pyrolysis 158: 105272. https://doi.org/10.1016/j.jaap.2021.105272

(51). https://smp.uq.edu.au/pitch-drop-experiment

(52). Ko S, Kang D, Jo M-S, Ha S-J, Jeon Y-P (2021) Journal of Industrial and Engineering Chemistry 95:92–100. https://doi.org/10.1016/j.jiec.2020.12.008

(53). Gao N, Cheng B, Hou H, Zhang R (2018) Materials Letters 212:243–246. https://doi.org/10.1016/j.matlet.2017.10.074

(54). Jiang M, Sun N, Ali Soomro R, Xu B (2021) Journal of Energy Chemistry 55:34–47. https://doi.org/10.1016/j.jechem.2020.07.002

(55). Yuan Q, Bateman S, Friedrich K (2008) Journal of Thermoplastic Composite Materials 21(4):323–336. https://doi.org/10.1177/0892705708089478

(56). Shirasu K, Nagai C, Naito K (2020) Mechanical Engineering Journal 7(4):1–8. https://doi.org/10.1299/mej.19-00599

(57). Kim BJ, Kotegawa T, Eom Y, An J, Hong IP, Kato O, Yoon SH (2016) Carbon 99:649–657. https://doi.org/10.1016/j.carbon.2015.12.082

(58). Inagaki M, Kang F (2014) Materials Science and Engineering of Carbon: Fundamentals 219–525. https://doi.org/10.1016/B978-0-12-800858-4.00003-6

(59). Liu J, Chen X, Xie Q, Liang D (2020) Journal of Cleaner Production 271:122498. https://doi.org/10.1016/j.jclepro.2020.122498

(60). Choi D, Kil HS, Lee S (2019) Carbon 42:610–649. https://doi.org/10.1016/j.carbon.2018.10.028

(61). Aldosari SM, Khan M, Rahatekar S (2020) Journal of Materials Research and Technology 9(4):7786–7806. https://doi.org/10.1016/j.jmrt.2020.05.037

(62). He ZC, Shi X, Li E, Li XK (2020) Composite Structures 251:112657. https://doi.org/10.1016/j.compstruct.2020.112657

(63). Park HM, Kim GM, Lee SY, Jeon H, Kim SY, Kim M, Yang BJ (2018) Construction and Building Materials 165:484–493. https://doi.org/10.1016/j.conbuildmat.2017.12.205

(64). Torchala K, Kierzek K, Gryglewicz G (2015) Electrochimica Acta, 167:348–356. https://doi.org/10.1016/j.electacta.2015.03.153

(65). Bermudez V, Ogale AA (2020) Carbon 168:328– 336. https://doi.org/10.1016/j.carbon.2020.06.062

(66). Qin X, Lu Y, Xiao H, Wen Y, Yu T (2012) Carbon 50(12):4459–4469. https://doi.org/10.1016/j.carbon.2012.05.024

(67). Park SJ, Heo GY (2014) Carbon Fibers 210:31–66. https://doi.org/10.1007/978-94-017-9478-7_2

(68). Park MS, Jung MJ, Lee YS (2016) Journal of Industrial and Engineering Chemistry 37:277–287. https://doi.org/10.1016/j.jiec.2016.03.040

(69). Greene ML, Schwartz RW, Treleaven JW (2002) Carbon 40(8):1217–1226. https://doi.org/10.1016/S0008-6223(01)00301-3

(70). Edie DD (1998) Carbon 36(4):345–362. https://doi.org/10.1016/S0008-6223(97)00185-1

(71). Yuan G, Jin Z, Zuo X, Xue Z, Yan F, Dong Z, Li X (2018) Energy & Fuels 32(8):8329–8339. https://doi.org/10.1021/acs.energyfuels.8b01824

(72). Zhai X, Liu J, Zhang Y, Fan Q, Li Z, Zhou Y (2019) Ceramics International 45(9):11734–11738. https://doi.org/10.1016/j.ceramint.2019.03.049

(73). Zhang X, Ning S, Ma Z, Song H, Wang D, Zhang M, Yan X 156 (2020): 499-505. https://doi.org/10.1016/j.carbon.2019.09.085

(74). Wang F (2017) Chapter 6: Carbon Fibers and Their Thermal Transporting Properties. Thermal Transport in Carbon-Based Nanomaterials 135–184. https://doi.org/10.1016/B978-0-32-346240-2.00006-6

(75). Moyer K, Meng C, Marshall B, Assal O, Eaves J, Perez D, Pint CL (2019) Energy Storage Materials 24:676–681. https://doi.org/10.1016/j.ensm.2019.08.003

(76). Choi H, Seo DJ, Choi WY, Choi SW, Lee MH, Park YJ, Jung CY (2021) Journal of Power Sources 484:229291. https://doi.org/10.1016/j.jpowsour.2020.229291

(77). Pina AC, Amaya A, Marcuzzo JS, Rodrigues AC, Baldan MR, Tancredi N, Cuña A (2018) Journal of Carbon Research 4(2):24. https://doi.org/10.3390/c4020024

(78). Mandapati, Jayalakshmi, Balasubramanian, K. (2008) Int. J. Electrochem. Sci. 3:1196–1217.

(79). Yue D, Yang J, Sun B, Shi K, Zhu H, Li X (2020) Carbon 167:931. https://doi.org/10.1016/j.micromeso.2021.110972

(80). Zheng Y, Ni D, Li N, Chen W, Lu W (2021) Microporous and Mesoporous Materials 316:110972. https://doi.org/10.1016/j.micromeso.2021.110972

(81). Yang CM, Kim BH (2018) Journal of Alloys and Compounds 749:441–447. https://doi.org/10.1016/j.jallcom.2018.03.305

(82). Ni G, Qin F, Guo Z, Wang J, Shen W (2019) Electrochimica Acta 330:135270. https://doi.org/10.1016/j.electacta.2019.135270

(83). Lee HM, Kwac LK, An KH, Park SJ, Kim BJ (2016) 125:347–352. https://doi.org/10.1016/j.enconman.2016.06.006

(84). Yun SI, Kim SH, Kim DW, Kim YA, Kim BH (2019) Carbon 149:637–645. https://doi.org/10.1016/j.carbon.2019.04.105

(85). Lang F, Xing Y, Zhao Y, Zhu J, Hou XH, Zhang W (2020) Composite Structures 254:112849. https://doi.org/10.1016/j.compstruct.2020.112849

(86). Mahaviradhan N, Sivaganesan S, Padma Sravya N, Parthiban A (2021) Materials Today: Proceedings 39:743–747. https://doi.org/10.1016/j.matpr.2020.09.443

(87). Pei R, Chen G, Wang Y, Zhao M, Wu G(2018). Journal of Alloys and Compounds 756:8–18. https://doi.org/10.1016/j.jallcom.2018.04.330

Published

2021-10-12

How to Cite

Kaidar, B., Smagulova, G., Imash, A., Zhaparkul, S., & Mansurov, Z. (2021). Pitch-based carbon fibers: preparation and applications. Combustion and Plasma Chemistry, 19(3), 159–170. https://doi.org/10.18321/cpc438

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>