Ways of complex processing of coal

Authors

  • A.A. Imash Institute of Combustion Problems,172 Bogenbay batyr str., Almaty, Kazakhstan
  • B.B. Kaidar Institute of Combustion Problems,172 Bogenbay batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • Y.A. Zhumataev Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • G.T. Smagulova Institute of Combustion Problems,172 Bogenbay batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc471

Keywords:

complex processing of coal, rare earth elements, carbon fibers, porous carbon materials, nanoporous carbon, activated carbon.

Abstract

Kazakhstan is an important global player in the production and export of coal in the world market. For many years, coal has been an important energy resource, but the development of nanotechnology and the improvement of existing technologies for deep processing of raw materials make it possible to look at coal not only as an energy resource, but also as a source for the production of porous carbon materials and the extraction of rare earth elements. The high demand for rare earths has turned the attention of researchers to coal resources as a potential source, especially for high-ash and low-grade coals. The paper considers methods for extracting rare earths from coal and products of its processing using acid, alkali and salt treatment. The disadvantages and advantages of each of the methods are shown. In addition, the work showed modern ways of complex processing of coal to obtain porous carbon materials, in the form of activated carbons and nanocarbon material. It is shown that by applying the methods of chemical and physical activation it is possible to obtain porous materials with a developed specific surface and different ratios of meso-, micro- and macropores. Thus, new ways of coal processing to obtain new functional materials are considered.

References

(1). Garside M. (2021) Global proven coal reserves by country 2020. Online available: https://www.statista.com/statistics/237096/provencoal- reserves-of-the-top-ten-countries/

(2). Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan // Production of industrial products in the mining and quarrying industry in the Republic of Kazakhstan for 2021. Online:https://stat.gov.kz/official/industry/151/statistic/7

(3). The National Energy Report KAZENERGY-2021 // online available: https://www.kazenergy.com/en/operation/ned/2177/

(4). Wei Y, Junnian S (2021) Sustainable Production and Consumption 28:811-823. https://doi.org/10.1016/j.spc.2021.07.010

(5). Methods of Classification and Characterization of Coal. (2004). Studies in Surface Science and Catalysis 150:1–79. https://doi.org/10.1016/S0167-2991(04)80006-5

(6). Alam J, Yadav VK, Yadav KK, Cabral-Pinto MMS, Tavker N, Choudhary N, Shukla AK, Ali FAA, Alhoshan M, Hamid AA (2021) Crystals 11(2):88. https://doi.org/10.3390/cryst11020088

(7). Report on Rare Earth Elements from Coal and Coal Byproducts (2021) Report to Congress January. United States Department of Energy Washington, DC 20585.

(8). Zhou Y, Zhao Y, Zhang J, Zheng C (2019) Emission and Control of Trace Elements from Coal-Derived Gas Streams 21–62. https://doi.org/10.1016/B978-0-08-102591-8.00002-7

(9). Rybak A, Rybak A (2021) Metals 11(1)142. https://doi.org/10.3390/met11010142

(10). Zhang W, Yang X, Honaker RQ (2018) Fuel 215:551–560. https://doi.org/10.1016/j.fuel.2017.11.075

(11). Honaker R, Hower J, Eble C, Weisenfluh J, Groppo J, Rezaee M, Bhagavatula A, Luttrell GH, Bratton RC, Kiser M (2014) Cell 724:554–3652.

(12). Zhang W, Honaker R (2020) Minerals Engineering 153:106382. https://doi.org/10.1016/j.mineng.2020.106382

(13). Bo C, Ya LAI, Guo XIAO, Chang XU (2010) Glob. Geol. 28:257–260.

(14). Rozelle PL, Khadilkar AB, Pulati N, Soundarrajan N, Klima MS, Mosser MM, Miller CE, Pisupati SV (2016) Metall. Mater. Trans. E 3:6–17. https://doi.org/10.1007/s40553-015-0064-7

(15). Laudal DA, Benson SA, Addleman RS, Palo D (2018) Int. J. Coal Geol. 191:112–124. https://doi.org/10.1016/j.coal.2018.03.010

(16). Yang X (2019) Leaching Characteristics of Rare Earth Elements from Bituminous Coal- Based Sources. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA.

(17). Huang Q, Noble A, Herbst J, Honaker R (2018) Powder Technol. 332:242–252. https://doi.org/10.1016/j.powtec.2018.03.063

(18). Yang X, Werner J, Honaker RQ (2019) J. Rare Earths 37:312–321. https://doi.org/10.1016/j.jre.2018.07.003

(19). Kuppusamy VK, Kumar A, Holuszko M (2019) J. Energy Resour. Technol. Trans. ASME, 141:1–7. https://doi.org/10.1115/1.4043328

(20). Varley D, Yousaf S, Youseffi M, Mozafari M, Khurshid Z, Sefat F (2019) Advanced Dental Biomaterials 301–315. https://doi.org/10.1016/B978-0-08-102476-8.00013-X

(21). McNaught AD, Wilkinson A (1997) IUPAC. Compendium of Chemical Terminology, 2nd ed. (the «Gold Book»). Blackwell Scientific Publications, Oxford. Online version (2019) created by Chalk SJ. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook

(22). Han Q, Zhang W, Han Z, Niu S, Zhang J, Wang F, Li X, Geng D, Yu G (2019) Ionics 25:5333–5340. https://doi.org/10.1007/s11581-019-03124-z

(23). Wang S, Bai J, Innocent MT, Wang Q, Xiang H, Tang J, Meifang Zhu (2021) Green Energy & Environment. https://doi.org/10.1016/j.gee.2021.04.006

(24). Breitenbach S, Unterweger C, Lumetzberger A, Duchoslav J, Stifter D, Hassel AW, Fürst C (2021) J Porous Mater 28:727–739. https://doi.org/10.1007/s10934-020-01026-4

(25). De Palmenaer A, Wortberg G, Merke M, Roeding T, Gries TG, Seide GH (2017) Fibers 67(4):204– 205. https://doi.org/10.3390/fib3030373

(26). Arai Y (2016) High-Performance and Specialty Fibers 343–356. https://doi.org/10.1007/978-4-431-55203-1_21

(27). Choi D, Kil H-S, Lee S (2018) Carbon 142:610– 649. https://doi.org/10.1016/j.carbon.2018.10.028

(28). Huson MG (2017) Structure and Properties of High-Performance Fibers 31–78. https://doi.org/10.1016/B978-0-08-100550-7.00003-6

(29). Kaidar B, Smagulova G, Imash A, Zhaparkul S, Mansurov Z (2021) Combustion and plasma chemistry 19(3):159-169. https://doi.org/10.18321/cpc438

(30). Jin Z, Zuo X, Long X, Cui Z, Yuan G, Dong Z, Zhang K, Cong Y, Li X (2021) J. Anal. Appl. Pyrolysis. 154:105009. https://doi.org/10.1016/j.jaap.2020.105009

(31). Sieira P, de Souza Mendes PR, de Castro A, Pradelle F (2021) Materials Letters 285:129110 https://doi.org/10.1016/j.matlet.2020.129110

(32). Russo C, Ciajolo A, Stanzione F, Tregrossi A, Oliano MM, Carpentieri A, Apicella B (2019) Fuel 245:478-487 https://doi.org/10.1016/j.fuel.2019.02.040

(33). Yang JY, Kim BS, Park SJ, Rhee KY, Seo MK (2019) Compos. Part B Eng. 165:467–472. https://doi.org/10.1016/j.compositesb.2019.01.102

(34). Andreikov EI, Safarov LF, Tsaur AG, Frizorger VK, Kochev LV, Savchenko IM (2016) Coke Chem. 59:101–105. https://doi.org/10.3103/S1068364X16030029

(35). Dauché FM, Bolaños G, Blasig A, Thies MC (1998) Carbon 36:953–961. https://doi.org/10.1016/S0008-6223(97)00212-1

(36). Gao S, Villacorta BS, Ge L, Steel K, Rufford TE, Zhu Z (2018) Fuel Process. Technol. 177:219–227. https://doi.org/10.1016/j.fuproc.2018.04.032

(37). Daulbayev C, Kaidar B, Sultanov F, Bakbolat B, Smagulova G, Mansurov Z (2021) A Review, South African Journal of Chemical Engineering 38:9–20. https://doi.org/10.1016/j.sajce.2021.07.001

(38). Huang R, Yuan X, Yan L, Han L, Bao W, Chang L, Liu J, Wang J, Ok YS (2021) Science of The Total Environment 788:147697. https://doi.org/10.1016/j.scitotenv.2021.147697

(39). Li L, Lin X, He J, Zhang Y, Lv J, Wang Y (2021) Journal of Analytical and Applied Pyrolysis. 155:105039. https://doi.org/10.1016/j.jaap.2021.105039

(40). Amoah-Antwi C, Kwiatkowska-Malina J, Thornton SF, Fenton O, Malina G, Szara E, (2020) Science of The Total Environment. 722:137852. https://doi.org/10.1016/j.scitotenv.2020.137852

(41). Alahabadi A, Singh P, Raizada P, Anastopoulos I, Sivamani S, Dotto GL, Landarani M, Ivanets A, Kyzas GZ, Hosseini-Bandegharaei A (2020) Colloids and Surfaces A: Physicochemical and Engineering Aspects 607:125516. https://doi.org/10.1016/j.colsurfa.2020.125516

(42). Hu S-C, Cheng J, Wang W-P, Sun G-T, Hu L-L, Zhu M-Q, Huang X-H (2021) Renewable Energy 177:82–94. https://doi.org/10.1016/j.renene.2021.05.113

(43). Neolaka YAB, Lawa Y, Naat J, Riwu AAP, Darmokoesoemo H, Widyaningrum BA, Iqbal M, Kusuma HS (2021) Environmental Technology & Innovation 24:101997. https://doi.org/10.1016/j.eti.2021.101997

(44). Zhang D, Lin X, Zhang Q, Ren X, Yu W, Cai H (2020) Energy 212:118983. https://doi.org/10.1016/j.energy.2020.118983

(45). Budihardjo MA, Wibowo YG, Ramadan BS, Serunting MA, Yohana E, Syafrudin (2021) Environmental Technology & Innovation 24:102022. https://doi.org/10.1016/j.eti.2021.102022

(46). Nikolenko Y, Opra D, Tsvetnikov A, Ustinov A, Kuryavyi V, Sokolov A, Ziatdinov A, Sinebryukhov S, Gnedenkov S (2018) Materials Today: Proceedings. 26002–26009. https://doi.org/10.1016/j.matpr.2018.08.020

(47). Rashidi NA, Yusup S (2021) Journal of Hazardous Materials 403:123876. https://doi.org/10.1016/j.jhazmat.2020.123876

(48). Cay-Durgun P, Lind ML (2018) Current Opinion in Chemical Engineering 20:19–27. https://doi.org/10.1016/j.coche.2018.01.001

(49). Koyuncu F, Güzel F, Sayğılı H (2018) Advanced Powder Technology 29:2108–2118. https://doi.org/10.1016/j.apt.2018.05.019

(50). Prajapati AK, Mondal MK (2020) Journal of Molecular Liquids 307:112949. https://doi.org/10.1016/j.molliq.2020.112949

(51). Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Pure and Applied Chemistry 87:1051– 1069. https://doi.org/10.1515/pac-2014-1117

(52). Wazir AH, ul Haq I, Manan A, Khan A (2020). International Journal of Coal Preparation and Utilization 1–12. DOI:10.1080/19392699.2 020.1727896

(53). Wang L, Sun F, Gao J, Pi X, Pei T, Qie Z, Zhao G, Qin Y (2018) Journal of the Taiwan Institute of Chemical Engineers 91:588-596. https://doi.org/10.1016/j.jtice.2018.06.014

(54). Jorge B, Manuel P-G, Almudena G-A, Juan J. Rodriguez and Carolina Belver (2020) Journal of C Carbon Research 6:21–25. DOI:10.3390/ c6020021

(55). Mestre AS, Carvalho AP (2018) Porosity - Process, Technologies and Applications, InTech. 37–68. https://doi.org/10.5772/intechopen.72476

(56). Strano MS, Rempel J, Halverson J, Burket C, Mathews J, Foley HC (2002) From Semiconductors to Proteins: Beyond the Average Structure 169–181. https://doi.org/10.1007/978-1-4615-0613-3_10

(57). Smith MA, Foley HC, Lobo RF (2004) Carbon 42:2041–2048. https://doi.org/10.1016/j.carbon.2004.04.009

(58). Bénard P, Chahine R (1997) Langmuir 13:808– 813. https://doi.org/10.1021/la960843x

(59). Guo J, Morris JR, Ihm Y, Contescu CI, Gallego NC, Duscher G, Pennycook SJ, Chisholm MF (2012) Small 8(21):3283–3288. https://doi.org/10.1002/smll.201200894

(60). Liu Y-C, Hung Y-H, Sutarsis, Hsu C-C, Ni C-S, Liu T-Y, Chang J-K, Chen H-Y (2021) Renewable Energy 171:87–94. https://doi.org/10.1016/j.renene.2021.01.149

(61). Li K-k, Liu G-y, Zheng L-s, Jia J, Zhu Y-y, Zhang Y-t. (2021) New Carbon Materials 36(1):133–154. https://doi.org/10.1016/S1872-5805(21)60010-0

(62). Manoj B, Raj AM, Thomas GC (2018) Scientific Reports 8:13891 https://doi.org/10.1038/s41598-018-32371-9

Published

2021-12-15

How to Cite

Imash, A., Kaidar, B., Zhumataev, Y., & Smagulova, G. (2021). Ways of complex processing of coal. Combustion and Plasma Chemistry, 19(4), 327–338. https://doi.org/10.18321/cpc471

Most read articles by the same author(s)