Ecological efficiency of utilization solid fuel plasma technology

Authors

  • V.E. Messerle Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; Kutateladze Institute of Thermophysics of the Siberian Branch of the RAS, Novosibirsk, Russia; Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • M.N. Orynbasar Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc466

Keywords:

thermal power plant, pulverized coal fuel, combustion, plastron, plasma-coal burner.

Abstract

Coal is the main fuel of thermal power plants (TPP), which provides more than 40% of electricity generation and about 25% of thermal energy in the world. Unlike renewable energy sources, thermal power plants supply consumers with energy around the clock and without interruption, regardless of the time of year. Expensive highly reactive fuel (fuel oil or natural gas) is burned to kindle pulverized coal boilers of thermal power plants. The burning of heating oil leads to an increase in harmful emissions into the atmosphere and initiates the search for alternative solutions for fuel-free kindling of pulverized coal boilers of thermal power plants. The most effective solution to this problem is the use of innovative plasma technology for fuel-free boiler kindling. Currently, much attention is paid to the fight against global warming and related environmental problems that lead to a negative impact on people, animals, and plants. The installation of plasma-coal burners in the furnaces of power boilers, providing their fuel-free kindling and illumination of the pulverized coal torch, significantly improves the environmental and economic indicators of thermal power plants. Currently, one of the priority tasks is to optimize the design of plasma-coal burners at existing thermal power plants.

References

(1). Stanek W, Czarnowska L, Gazda W, Simla T (2018) Renew. Energy. 115:87–96. https://doi.org/10.1016/j.renene.2017.07.074

(2). Gazda W, Stanek W (2016) Appl. Energy. 169: 138–149. https://doi.org/10.1016/j.apenergy.2016.02.037

(3). Baum Z, Palatnik RR, Ayalon O, Elmakis D, Frant S (2019) Renew. Energy. 132:1216–1229. https://doi.org/10.1016/j.renene.2018.08.073

(4). Mesfun S., Sanchez DL, Leduc S, Wetterlund E, Lundgren J, Biberacher M, Kraxner F (2017) Renew. Energy. 107:361–372. https://doi.org/10.1016/j.renene.2017.02.020

(5). Tarroja B, Mueller F, Eichman JD, Brouwer J, Samuelsen S (2011) Renew. Energy. 36:3424–3432. https://doi.org/10.1016/j.renene.2011.05.022

(6). Xia S, Chan KW, Luo X, Bu S, Ding Z, Zhou B (2018) Renew. Energy. 122:472–486. https://doi.org/10.1016/j.renene.2018.02.010

(7). Jacobson MZ, Delucchi MA, Cameron MA, Mathiesen BV (2018) Renew. Energy. 123:236–248. https://doi.org/10.1016/j.renene.2018.02.009

(8). Fiedler T (2019) Renew. Energy. 130:319–328. https://doi.org/10.1016/j.renene.2018.06.061

(9). Cromarkovic N, Repic B, Mladenovic R, Neskovic O, Veljkovic M. (2007) Fuel 86:194-202. https://doi.org/10.1016/j.fuel.2006.06.015.

(10). Yılmazoglu MZ, Durmaz A, Baker D (2012) Energy Convers Manag. 64:23-27. https://doi.org/10.1016/j.enconman.2012.04.019.

(11). Union of Concerned Scientists. 2021. Coal and Air Pollution. https://www.ucsusa.org/ resources/coal-and-air-pollution.

(12). Global Energy Monitor. 2021. Environmental impacts of coal. https://www.gem.wiki/ Environmental_impacts_of_coal.

(13). Messerle VE, Ustimenko AB (2007) APlasma-Supported Coal Combustion Modeling and Full-Scale Trials. In: Syred N., Khalatov A. (eds) Advanced Combustion and Aerothermal Technologies. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. – 2007. – P.115–129. https://doi.org/10.1007/978-1-4020-6515-6_10

(14). Bukowski P, Dyjakon A, Kordylewski W, Salmonowicz M (2006) Międzynarodowa X Konferencja Kotłowa, Szczyrk, – P.17-20.

(15). Kanilo PM, Kazantsev VI, Rasyuk NI, Schu¨nemann K, Vavriv DM (2003) Fuel 82:187–193. https://doi.org/10.1016/S0016-2361(02)00201-6

(16). Messerle VE, Karpenko EI, Ustimenko AB (2014) Fuel 126:294–300.https://doi.org/10.1016/j.fuel.2014.02.047

(17). Askarova AS, Karpenko EI, Lavrishcheva YI, Messerle VE, Ustimenko AB (2007) IEEE Transactions on plasma science 35:1607–1616. https://doi.org/10.1109/TPS.2007.910142

(18). Belosevic S, Sijercic M, Stefanovic P (2008) Int J Heat Mass Transf. 51:1970–1978. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.003

(19). Gorokhovski MA, Jankoski Z, Lockwood FC, Karpenko EI, Messerle VE, Ustimenko AB (2007) Combust Sci Technol 179(10):2065–2090. https://doi.org/10.1080/00102200701386115

(20). Kanilo PM, Kazantsev VI, Rasyuk NI, Schünemann K, Vavriv DM (2003) Fuel 82:187–193. https://doi.org/10.1016/S0016-2361(02)00201-6

(21). Askarova AS, Bolegenova SA, Bolegenova SA, Maksimov VYu, Beketaeva MT (2019) Thermophysics and Aeromechanics 26:317–335. https://doi.org/10.1134/S0869864319020124

(22). Safarik P, Nugymanova A, Bolegenova S, Askarova A, Maximov V, Bolegenova S (2019) J. Acta Polytechnica 59:98−108. https://doi.org/10.14311/AP.2019.59.0098

(23). Georgiev A, Baizhuma Zh, Nugymanova A, Bolegenova S, Askarova A, Bolegenova S (2018) J. Bulgarian Chemical Communications. 50:53−60.

(24). Messerle VE, Ustimenko AB (2012) Plasma ignition and solid fuel combustion (Scientific and technical bases) [Plazmennoe vosplamenenie I gorenie tverdogo topliva]. Palmarium Academic Publishing, Saarbrucken, Germany. 404 p. ISBN 978-3-8473-9845-5. (in Russian)

Downloads

Published

2021-12-15

How to Cite

Messerle, V., & Orynbasar, M. (2021). Ecological efficiency of utilization solid fuel plasma technology. Combustion and Plasma Chemistry, 19(4), 289–298. https://doi.org/10.18321/cpc466