Production of porous nickel based half-cell solid oxide fuel cell and a thin-film yttrium oxide stabilized with zirconium dioxide electrolyte
DOI:
https://doi.org/10.18321/cpc536Keywords:
thin-film solid oxide fuel cells, porous anode, pore-forming agent, electrolyte, pulsed laser deposition.Abstract
In this work, a porous nickel anode for thinfilm solid oxide fuel cell prepared by the simple powder hot-pressing method is investigated. Powders of Ni and pore-forming agent (PFA) were thoroughly mixed in different ratios, pressed in a mold and further sintered. The polishing technique with Yttria-Stabilized Zirconia (YSZ) powder has been developed to decrease the surface roughness of Ni-based anode in order to deposit a crack-free electrolyte layer. The 3 μm YSZ thin-film electrolyte was deposited by the pulsed laser deposition technique on the surface of the anode. Morphological and elemental analyses of the samples were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. X-ray diffraction was used for phase analysis and structural characterization. The specific surface areas of the resulting anodes were calculated from their isotherms of N2 adsorption and desorption using the Sorbtometer and calculated by Brunauer Emmett-Teller (BET) method. As a result, the highest mechanical strength and specific surface area (15.42 m2g-1) possessed a sample with the content of PFA equal to 40%, while its ionic conductivity at 800 °C reached 6.4∙10-2 S/cm.
References
(1). Yu F, Han T, Wang Z, Xie Y, Wu Y, Jin Y, Yang N, Xiao J, Kawi S (2021) Int. J. Hydrogen Energ. 46:4283-4300. https://doi.org/10.1016/j.ijhydene.2020.10.259
(2). Li L, Lin J, Wu N, Xie S, Meng C, Zheng Y, Wang X, Zhao Y (2020) Energy and Built Environment 3:139-157. https://doi.org/10.1016/j.enbenv.2020.12.002
(3). Sultanov FR, Daulbayev C, Bakbolat B, Mansurov ZA (2018) Eurasian Chem.-Technol. J. 20:195-200. https://doi.org/10.18321/ectj721
(4). Sultanov FR, Daulbayev Ch, Bakbolat B, Mansurov ZA, Urazgaliyeva AA, Rabi Ebrahim, Pei SS, Kun-Ping Huang (2020) Carbon Lett. 30:81-92. DOI:10.1007/s42823- 019-00073-5
(5). Yang B, Guo Z, Wang J, Wang J, Zhu T, Shu H, Qiu G, Chen J, Zhang J. (2021) J. Energy Storage 34:102153. https://doi.org/10.1016/j.est.2020.102153
(6). Zeng Z, Qian Y, Zhang Y, Hao C, Dan D, Zhuge W (2020) Appl. Energ. 280:115899. https://doi.org/10.1016/j.apenergy.2020.115899
(7). Ma M, Yang X, Qiao J, Sun W, Wang Z, Sun K (2021) J. Energy Chem 56:209-222. https://doi.org/10.1016/j.jechem.2020.08.013
(8). Abd Aziz AJ, Baharuddin NA, Somalu MR, Muchtar A (2020) Ceram. Int. 46:23314-23325. https://doi.org/10.1016/j.ceramint.2020.06.176
(9). Ding D, Li X, Yuxiu Lai S, Gerdes K, Liu M (2014) Energ. Environ. Sci. 7:552-575. https://doi.org/10.1039/c3ee42926a
(10). Glenn MJ, Allen JA, Donne SW (2020) J. Power Sources 453:227662. https://doi.org/10.1016/j.jpowsour.2019.227662
(11). Benamira M, Ringuedé A, Albin V, Vannier R-N, Hildebrandt L, Lagergren C, Cassir M (2011) J.Power Sources 196:5546-5554. https://doi.org/10.1016/j.jpowsour.2011.02.004
(12). Hou J, Yang M, Zhang J (2020) Renew. Energ. 155:1355-1371. https://doi.org/10.1016/j.renene.2020.04.002
(13). Prykhodko Y, Fatyeyeva K, Hespel L, Marais S (2021) Chem. Eng. J. 409:127329. https://doi.org/10.1016/j.cej.2020.127329
(14). Xu X, Xu Y, Ma J, Yin Y, Fronzi M, Wang X, Bi L (2021) J. Power Sources. 489:229486. https://doi.org/10.1016/j.jpowsour.2021.229486
(15). Sultanov FR, Bakbolat B, Mansurov ZA, Azizov ZM, Pei SS, Ebrahim R, Daulbayev Ch, Urazgaliyeva AA, Tulepov MI (2017) Eurasian Chem.-Technol. J. 19:127-132. https://doi.org/10.18321/ectj286
(16). Beissenov RE, Mereke AL, Umirzakov AG, Mansurov ZA, Rakhmetov BA, Beisenova YY, Shaikenova AA, Muratov DA (2021) Mat. Sci. Semicon. Proc. 121:105360. https://doi.org/10.1016/j.mssp.2020.105360
(17). Daulbaev CB, Dmitriev TP, Sultanov FR, Mansurov ZA, Aliev ET (2017) J. Eng. Phys. Thermophys. 90:1115-1118. https://doi.org/10.1007/s10891-017-1665-z
(18). Agarwal M, Kumar V, Malladi SRK, Balasubramaniam R, Balani K (2010) JOM. 62:88-92. https://doi.org/10.1007/s11837-010-0095-6
(19). Lv X, Chen H, Zhou W, Cheng F, Li S-D, Shao Z (2020) Renew. Energ. 150:334-341. https://doi.org/10.1016/j.renene.2019.12.126
(20). Fergus JW (2006) Solid State Ionics. 177(17-18):1529-1541. https://doi.org/10.1016/j.ssi.2006.07.012
(21). Ebrahim R, Yeleuov M, Ignatiev A (2017) Adv. Mater. Technol. 2:1700098. https://doi.org/10.1002/admt.201700098
(22). Zakaria Z, Abu Hassan SH, Shaari N, Yahaya AZ, Boon Kar Y (2019) Int. J. Energ. Res. 44:631-650. https://doi.org/10.1002/er.4944
(23). Hidalgo H, Reguzina E, Millon E, Thomann A-L, Mathias J, Boulmer-Leborgne C, Sauvage T, Brault P (2011) Surf. Coat. Tech. 205:4495-4499. https://doi.org/10.1016/j.surfcoat.2011.03.077
(24). Nenning A, Gerstl M, Bram M, Opitz AK (2019) ECS Trans. 91:479-490. https://doi.org/10.1149/09101.0479ecst
(25). Hauch A, Mogensen M (2010) Solid State Ionics. 181:745-753. https://doi.org/10.1016/j.ssi.2010.04.001
(26). Buyukaksoy A, Birss V (2015) ECS Trans. 66:253-265. https://doi.org/10.1149/06602.0253ecst
(27). Sam Zhang (2010) Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, Chapter 5: Thin Coating Technologies and Applications in High-Temperature Solid Oxide Fuel Cells. 1:254. DOI:10.1201/ b11846
(28). Holtappels P, Sorof C, Verbraeken MC, Rambert S, Vogt U. (2006) Fuel Cells. 6:113-116. https://doi.org/10.1002/fuce.200500116
(29). Haslam JJ, Pham A-Q, Chung BW, DiCarlo JF, Glass RS (2005) J. Am. Ceram. Soc. 88:513-518. https://doi.org/10.1111/j.1551-2916.2005.00097.x
(30). Walton KS, Snurr RQ (2007) J. Am. Chem. Soc.129:8552-8556. https://doi.org/10.1021/ja071174k
(31). Suciu C, Dorolti E, Hoffmann AC (2018) Mater.Sci. Energy Technol. 1:136-145. https://doi.org/10.1016/j.mset.2018.06.007