Nanostructured materials in hydrogen storage systems (review)

Authors

  • B.T. Lesbayev Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • Ch. Daulbaev Nazarbayev University, 53 Kabanbai Batyr str., Nur- Sultan, Kazakhstan
  • M. Auelkhankyzy Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • M. Yeleuov Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • N.B. Rakhymzhan al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • G.S. Ustaeva Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • A.B. Maltay Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • E.M. Maral Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc534

Keywords:

хранение водорода, наноматериалы, гидрид, нанотрубки, адсорбция, десорбция.

Abstract

Hydrogen is a promising universal energy carrier that can replace fossil fuels in the energy industry, as it is environmentally friendly and has a variety of energy conversion options. At present, hydrogen production technologies are provided with an unlimited raw material base and make it possible to produce hydrogen on an industrial scale. However, for the large-scale development of hydrogen energy, it is necessary to solve a number of scientific and technological problems. The development of the most economical and efficient methods of hydrogen storage is one of the main technological problems of hydrogen energy. In this regard, the review discusses in detail the studies carried out to solve the problems of hydrogen storage using hydrides, nanoporous carbon, porous nanomaterials and composites based on them, and also analyzes the related tasks and future prospects associated with the search for methods for its production.

References

(1). Al-Shahri OA, Ismail FB, Hannan MA, Lipu MSH, Al-Shetwi AQ, Begum RA, Al-Muhsen NFO, Soujeri E (2021) J. Clean. Prod. 284:125465. https://doi.org/10.1016/j.jclepro.2020.125465

(2). Cole W, Gates N, Mai T (2021) Electr. J. 34:106957. https://doi.org/10.1016/j.tej.2021.106957

(3). Li R, Leung GCK (2021) Energy Rep. 7:1712-1719. https://doi.org/10.1016/j.egyr.2021.03.030

(4). Whitmarsh L, Poortinga W, Capstick S (2021) Curr. Opin. Psychol. 42:76-81. https://doi.org/10.1016/j.copsyc.2021.04.002

(5). Singh R, Singh M, Gautam S (2020) Mater. Today Proc. S2214785320367547. https://doi.org/10.1016/j.matpr.2020.09.065

(6). Yee Mah AX, Ho WS, Hassim MH, Hashim H, Liew PY, Muis ZA (2021) Energy 218:119475. https://doi.org/10.1016/j.energy.2020.119475

(7). Zhao Y, Xu Y, Yüksel S, Dinçer H, Ubay GG (2021) Int. J. Hydrog. Energy 46:8835-8851. https://doi.org/10.1016/j.ijhydene.2020.12.211

(8). Kurtz J, Bradley T, Winkler E, Gearhart C (2020) Int. J. Hydrog. Energy 45:32298-32310. https://doi.org/10.1016/j.ijhydene.2019.10.014

(9). Mouli-Castillo J, Heinemann N, Edlmann K (2021) Appl. Energy 283:116348. https://doi.org/10.1016/j.apenergy.2020.116348

(10). Newborough M, Cooley G (2020) Fuel Cells Bull. 2020(10):16-22. https://doi.org/10.1016/S1464-2859(20)30486-7

(11). Yue T, Jiang D, Zhang Z, Zhang Y, Li Y, Zhang T, Zhang Q (2021) Bioresour. Technol. 331:125048. https://doi.org/10.1016/j.biortech.2021.125048

(12). Xin Y, Sun B, Liu J, Wang Q, Zhu X, Yan Z (2021) Renew. Energy 171:728-734. https://doi.org/10.1016/j.renene.2021.02.150

(13). Zeng Z, Jing D, Guo L (2021) Energy (2021) 120578. https://doi.org/10.1016/j.energy.2021.120578

(14). Qyyum MA, Dickson R, Ali Shah SF, Niaz H, Khan A, Liu JJ, Lee M (2021) Renew. Sustain. Energy Rev. 110843. https://doi.org/10.1016/j.rser.2021.110843

(15). Kerscher F, Stary A, Gleis S, Ulrich A, Klein H, Spliethoff H (2021) Int. J. Hydrog. Energy S0360319921010260. https://doi.org/10.18261/issn.2535-6003-2021-01-02-01

(16). Şahin S, Şahin HM (2021) Int. J. Hydrog. Energy S0360319920348175. https://doi.org/10.1016/j.ijhydene.2020.12.182

(17). Sharma P, Bera T, Semwal K, Badhe RM, Sharma A, Ramakumar SSV, Neogi S (2020) Int.J. Hydrog. Energy 45:25386-97. https://doi.org/10.1016/j.ijhydene.2020.06.269

(18). Zheng J, Zhou H, Wang C-G, Ye E, Xu JW, Loh XJ, Li Z (2021) Energy Storage Mater. 35:695-722. https://doi.org/10.1016/j.ensm.2020.12.007

(19). Doğan M, Sabaz P, Bi̇ci̇l Z, Koçer Kizilduman B, Turhan Y (2020) J. Energy Inst. 93:2176-2185. https://doi.org/10.1016/j.joei.2020.05.011

(20). Guo F, Namba K, Miyaoka H, Jain A, Ichikawa T (2021) Mater. Lett. X. 9:100061. https://doi.org/10.1016/j.mlblux.2021.100061

(21). Cabria I (2020) Int. J. Hydrog. Energy 46:12192-12205. https://doi.org/10.1016/j.ijhydene.2020.04.212

(22). Karatas M (2020) Int. J. Hydrog. Energy 45:16227-16238. https://doi.org/10.1016/j.ijhydene.2019.11.130

(23). Elberry AM, Thakur J, Santasalo-Aarnio A, Larmi M (2021) Int. J. Hydrog. Energy S0360319921005838. https://doi.org/10.1016/j.ijhydene.2021.02.080

(24). Kumar P, Singh S, Hashmi SAR, Kim K-H (2021) Nano Energy 85:105989. https://doi.org/10.1016/j.nanoen.2021.105989

(25). Shet SP, Shanmuga Priya S, Sudhakar K, Tahir M (2021) Int. J. Hydrog. Energy 46:11782-11803. https://doi.org/10.1016/j.ijhydene.2021.01.020

(26). Gholami T, Pirsaheb M (2021) Int. J. Hydrog. Energy 46:783-795. https://doi.org/10.1016/j.ijhydene.2020.10.003

(27). Lin H-J, Li H-W, Shao H, Lu Y, Asano K (2020) I Mater. Today Energy 17:100463. https://doi.org/10.1016/j.mtener.2020.100463

(28). Suyetin M (2017) Int. J. Hydrog. Energy 42:3114-3121. https://doi.org/10.1016/j.ijhydene.2017.01.062

(29). Archana K, Pillai NG, Sai Srinivasan KV, Chauhan PK, Sujith R, Rhee KY, Asif A (2020) https://doi.org/10.1016/j.ijhydene.2020.09.137

(30). Liu M, Zhao S, Xiao X, Chen M, Sun C, Yao Z, Hu Z, Chen L (2019) Nano Energy 61:540-549. https://doi.org/10.1016/j.nanoen.2019.04.094

(31). Jain V, Kandasubramanian B (2020) J. Mater. Sci. 55:1865-1903. https://doi.org/10.1007/s10853-019-04150-y

(32). Li Y, Liu H (2021) Int. J. Hydrog. Energy 46(9):6623-6631. https://doi.org/10.1016/j.ijhydene.2020.11.139

(33). Zhao Z, Zhu Z, Wang F, Li S, Bao X, Zhang L, Lin S, Ya zng Y (2021) Chem. Eng. J. 415:128885. https://doi.org/10.1016/j.cej.2021.128885

(34). Lu X, Zhang L, Yu H, Lu Z, He J, Zheng J, Wu F, Chen L (2021) Chem. Eng. J. 422:130101. https://doi.org/10.1016/j.cej.2021.130101

(35). Kag D, Luhadiya N, Patil ND, Kundalwal SI (2021) Int. J. Hydrog. Energy S0360319921014476. https://doi.org/10.1016/j.ijhydene.2021.04.098

(36). Öztürk Z (2021) Int. J. Hydrog. Energy 46:11804-11814. https://doi.org/10.1016/j.ijhydene.2021.01.073

(37). Petrushenko IK, Petrushenko KB (2019) Surfaces and Interfaces 17:100355. https://doi.org/10.1016/j.surfin.2019.100355

(38). Yuan W, Li B, Li L (2011) Applied Surface Science 257(23):10183-10187. https://doi.org/10.1016/j.apsusc.2011.07.015

(39). Anafcheh M, Naderi F (2018) Int. J. Hydrog. Energy 43(27):12271-12277. https://doi.org/10.1016/j.ijhydene.2018.05.027

(40). Qingrong Z, Weidong Z, Xuan Z, Mengbo W, Shengping L (2021) Int. J. Hydrog. Energy 46:18412-18422. https://doi.org/10.1016/j.ijhydene.2021.02.210

(41). Prasetyo N, Pambudi FI (2021) Int. J. Hydrog. Energy 46:4222-4228. https://doi.org/10.1016/j.ijhydene.2020.10.222

(42). Huang T, Huang X, Hu C, Wang J, Liu H, Xu H, Sun F, Ma Z, Zou L, Ding W (2020) Chem. Eng. J.127851. https://doi.org/10.1016/j.cej.2020.127851

(43). Tarasov BP, Fursikov PV, Volodin AA, Bocharnikov MS, Shimkus YY, Kashin AM, Yartys VA, Chidziva S, Pasupathi S, Lototskyy

MV (2021) Int. J. Hydrog. Energy 46:13647-13657. https://doi.org/10.1016/j.ijhydene.2020.07.085

(44). Wang C-S, Brinkerhoff J (2021) Int. J. Hydrog.Energy 46:12031-12034. https://doi.org/10.1016/j.ijhydene.2021.01.067

(45). Yartys VA, Lototskyy MV, Linkov V, Pasupathi S, Davids MW, Tolj I, Radica G, Denys RV, Eriksen J, Taube K, Bellosta von Colbe J, Capurso G, Dornheim M, Smith F, Mathebula D, Swanepoel D, Suwarno S (2021) Int. J. Hydrog. Energy S0360319921003608. https://doi.org/10.1016/j.ijhydene.2021.01.190

(46). Eisapour AH, Eisapour M, Talebizadehsardari P, Walker GS (2021) J. Energy Storage 36:102443. https://doi.org/10.1016/j.est.2021.102443

(47). Urunkar RU, Patil SD (2021) Int. J. Hydrog. Energy 46(37):19486-97. https://doi.org/10.1016/j.ijhydene.2021.03.090

(48). Zhang X, Cao S, Zhang N, Wang L, Chen X, Li Z (2018) Materials Chemistry and Physics 209:134-145. https://doi.org/10.1016/j.matchemphys.2017.12.082

(49). Tavhare P, Chaudhari A (2019) Materials Letters 244:104-107. https://doi.org/10.1016/j.matlet.2019.02.054

(50). Petrushenko IK, Tsar’kova AI, Petrushenko KB (2020) Diam. Relat. Mater. 108:107968. https://doi.org/10.1016/j.diamond.2020.107968

(51). Rathinavel S, Priyadharshini K, Panda D (2021) Mater. Sci. Eng. B 268:115095. https://doi.org/10.1016/j.mseb.2021.115095

(52). Jain N, Jee Kanu N (2021) Mater. Today Proc. 43:2998–3005. https://doi.org/10.1016/j.matpr.2021.01.331

(53). Hussain RA, Hussain I (2020) Mater.Chem. Phys. 256:123691. https://doi.org/10.1016/j.matchemphys.2020.123691

(54). Sultanov F, Bakbolat B, Daulbaev Ch, Urazgalieva A, Azizov Z, Mansurov Z, Tulepov M, Pei SS (2017) J. Eng. Phys. Thermophys. 90:826–830. https://doi.org/10.1007/s10891-017-1631-9

(55). Aly K, Muhuri AK, Bradford PD (2021) J. Eur. Ceram. Soc. 41:3303–3313. https://doi.org/10.1016/j.jeurceramsoc.2020.12.035

(56). Das P, Das S, Ratha S, Chakraborty B, Chatterjee S (2021) Electrochimica Acta 371:137774. https://doi.org/10.1016/j.electacta.2021.137774

(57). Laikhtman A, Michaelson S, Hoffman A, Kim TK, Moon HR, Zak A (2014) Int. J. Hydrog. Energy 39:9837–9841. https://doi.org/10.1016/j.ijhydene.2014.02.033

(58). Cardoso GL, Piquini PC, Khossossi N, Ahuja R (2021) Int. J. Hydrog. Energy S0360319921010752. https://doi.org/10.1016/j.ijhydene.2021.03.146

(59). Kosar N, Munsif S, Ayub K, Mahmood T (2021) Int. J. Hydrog. Energy 46:9163–9173. https://doi.org/10.1016/j.ijhydene.2021.01.011

(60). Ma L-C, Sun Y-R, Wang L-C, Ma L, Zhang J-M (2021) Mater. Today Commun. 26:101985. https://doi.org/10.1016/j.mtcomm.2020.101985

(61). Bi L, Yin J, Huang X, Ren S, Yan G, Wu Q, Wang Y, Yang Z (2019) Int. J. Hydrog. Energy 44:2934–2942. https://doi.org/10.1016/j.ijhydene.2018.11.212

(62). Matsumoto N, Kinoshita H, Shimanaka Y, Ohmae N (2020) Chem. Phys. Lett. 751:137530. https://doi.org/10.1016/j.cplett.2020.137530

(63). Noura M, Rahdar A, Taimoory SM, Hayward JJ, Sadraei SI, Trant JF (2020) Int. J. Hydrog. Energy 45:11176–11189. https://doi.org/10.1016/j.ijhydene.2020.02.053

(64). Wu G, Li J, Tang C, Ouyang T, He C, Zhang C, Zhong J (2019) Appl. Surf. Sci. 498:143763. https://doi.org/10.1016/j.apsusc.2019.143763

(65). Aghababaei M, Ghoreyshi AA, Esfandiari K (2020) Int. J. Hydrog. Energy 45:23112–23121. https://doi.org/10.1016/j.ijhydene.2020.06.201

(66). Liu Y, Lu F, Gao S, Shi H, Mai Y, Zhang L, Dai Y, Liao B, Hu W (2020) Int. J. Hydrog. Energy 45:10797–10805. https://doi.org/10.1016/j.ijhydene.2020.01.249

(67). Zhang L, Sun Z, Cai Z, Yan N, Lu X, Zhu X, Chen L (2020) Appl. Surf. Sci. 504:144465. https://doi.org/10.1016/j.apsusc.2019.144465

(68). Ghosh S, Padmanabhan V (2017) Diam. Relat. Mater. 77:46-52. https://doi.org/10.1016/j.diamond.2017.05.013

(69). Liu С, Chen Н, Wu С-Z, Xu S-T, Cheng H-M. (2010) Carbon 48(2):452-455. https://doi.org/10.1016/j.carbon.2009.09.060

(70). Sawant SV, Banerjee S, Patwardhan AW, Joshi JB, Dasgupta K (2020) Int. J. Hydrog. Energy 45:13406–13413. https://doi.org/10.1016/j.ijhydene.2020.03.019

(71). Sharma A (2020) Int. J. Hydrog. Energy 45:2967–2974. https://doi.org/10.1016/j.ijhydene.2019.11.093

(72). Bi L, Yin J, Huang X, Wang Y, Yang Z (2020) Int. J. Hydrog. Energy 45:17637–17648. https://doi.org/10.1016/j.ijhydene.2020.04.227

(73). Sharma A (2020) Int. J. Hydrog. Energy 45:23966–23970. https://doi.org/10.1016/j.ijhydene.2019.09.025

(74). Yartys VA, Lototskyy MV, Akiba E, Albert R, Antonov VE, Ares JR, Baricco M, Bourgeois N, Buckley CE, Bellosta von Colbe JM, Crivello J-C, Cuevas F, Denys RV, Dornheim M, Felderhoff M, Grant DM, Hauback BC, Humphries TD, Jacob I, Jensen TR, de Jongh PE, Joubert J-M, Kuzovnikov MA, Latroche M, Paskevicius M, Pasquini L, Popilevsky L, Skripnyuk VM, Rabkin E, Sofianos MV, Stuart A, Walker G, Wang H, Webb CJ, Zhu M (2019) Int. J. Hydrog. Energy 44:7809–7859. https://doi.org/10.1016/j.ijhydene.2018.12.212

(75). Wang K, Zhang X, Liu Y, Ren Z, Zhang X, Hu J, Gao M, Pan H (2021) Chem. Eng. J. 406:126831. https://doi.org/10.1016/j.cej.2020.126831

(76). Huang T, Huang X, Hu C, Wang J, Liu H, Ma Z, Zou J, Ding W (2021) Mater. Today Energy 19:100613. https://doi.org/10.1016/j.mtener.2020.100613

(77). Pan WY, Liu BH, Li ZP (2014) Int. J. Hydrog. Energy 39:15595–15603. https://doi.org/10.1016/j.ijhydene.2014.07.151

(78). Tarasov BP, Lototskii MV, Yartys’ VA (2007) Russ J Gen Chem 77:694-711. https://doi.org/10.1134/S1070363207040329

(79). Heo Y-J, Park S-J (2018) Journal of Industrial and Engineering Chemistry 31: 330-334. https://doi.org/10.1016/j.jiec.2015.07.006

(80). Wang LF, Yang RT (2010) Catalysis Reviews 52:411-461. https://doi.org/10.1080/01614940.2010.520265

(81). Chung T-Y, Tsao C-S, Tseng H-P, Chen C-H, Yu M-S (2015) Journal of Colloid and Interface Science 441:98-105. https://doi.org/10.1016/j.jcis.2014.10.062

(82). Parambhath VB, Nagar R, Ramaprabhu S (2012) Langmuir 28:7826-7833. https://doi.org/10.1021/la301232r

(83). Vinayan BP, Sethupathi K, Ramaprabhu S (2013) Int. J. Hydrog. Energy 38:2240-2250. https://doi.org/10.1016/j.ijhydene.2012.11.091

(84). Zhao W, Luo L, Chen T, Li Z, Zhang Z, Wang H, Rao J, Feo L, Fan M (2019) Composites Part B: Engineering 161:464-472. https://doi.org/10.1016/j.compositesb.2018.12.122

(85). http://www.eere.energy.gov/hydrogenandfuelcells/mypp

Published

2022-03-16

How to Cite

Lesbayev, B., Daulbaev, C., Auelkhankyzy, M., Yeleuov, M., Rakhymzhan, N., Ustaeva, G., Maltay, A., & Maral, E. (2022). Nanostructured materials in hydrogen storage systems (review). Combustion and Plasma Chemistry, 20(2), 103–114. https://doi.org/10.18321/cpc534

Most read articles by the same author(s)

1 2 > >>