Detonation combustion of gas mixture in a plane channel with multiple barriers

Authors

  • V.A. Levin Institute of Mechanics, Lomonosov Moscow State University, 1 Michurinskiy Prospekt, Moscow, Russia
  • T.A. Zhuravskaya Institute of Mechanics, Lomonosov Moscow State University, 1 Michurinskiy Prospekt, Moscow, Russia

DOI:

https://doi.org/10.18321/cpc533

Keywords:

detonation wave, plane channel, hydrogenair mixture, barriers, conservation/quenching of detonation.

Abstract

control in a stoichiometric hydrogen-air mixture in a plane channel, on one of the walls of which there is a region with barriers, are numerically studied. The influence of the geometrical parameters of the region (its length, the barriers height and the frequency of their position) on the detonation combustion of the mixture has been studied. The possibility of detonation control by preliminary preparation of the combustible mixture (decomposition of a part of molecular hydrogen and molecular oxygen into atomic gases) or introduction of argon and ozone additives into the combustible mixture is considered. It has been established that the  detonation wave in the prepared gas and in the mixture with additives, concentrations of which ensure the cell size of the detonation wave in the resulting mixture is close to the average cell size in the initial mixture, is more resistant to disturbances caused by obstacles located in the channel. So, it is possible to use these mechanisms to prevent quenching of detonation combustion in a channel with multiple barriers.

References

(1). Levin VA, Markov VV, Zhuravskaya TA, Osinkin SF (2005) Proceedings of the Steklov Institute of Mathematics [Trudy Matematicheskogo instituta im. V.A. Steklova RAN] 251:192-205. (in Russian)

(2). Zhuravskaya TA (2007) Fluid Dynamics [Izv. RAN. MZHG.] 42(6):987-994. https://doi.org/10.1134/S0015462807060142 (in Russian)

(3). Yang T, He Q, Ning J, Li J. (2022) International Journal of Hydrogen Energy 47(25):12711-12725. https://doi.org/10.1016/j.ijhydene.2022.01.230

(4). Obara T, Sentanuhady J, Tsukada Y, Ohyagi S (2008) Shock Waves 18:117-127. https://doi.org/10.1007/s00193-008-0147-9

(5). Qin H, Lee JHS, Wang Z, Zhuang F (2015) Proceeding the Combustion Institute 35(2):1973-1979. https://doi.org/10.1016/j.proci.2014.07.056

(6). Mehrjoo N, Gao Y, Kiyanda CB, Ng HD, Lee JHS (2015) Proceedings of the Combustion Institute 35(2):1981-1987. https://doi.org/10.1016/j.proci.2014.06.031

(7). Sharypov OV, Pirogov YA (1995) Comb. Expl. Shock Waves [Fizika goreniya i vzryva] 31(4):466-470. https://doi.org/10.1007/BF00789368 (in Russian)

(8). Teodorczyk A, Lee JHS (1995) Shock Waves 4(4):225-236. https://doi.org/10.1007/BF01414988

(9). Radulescu MI, Lee JHS (2002) Combustion and Flame 131(1-2):29-46. https://doi.org/10.1016/S0010-2180(02)00390-5

(10). Bivol GYu, Golovastov SV, Golub VV (2018) Shock Waves 28(5):1011-1018. https://doi.org/10.1007/s00193-018-0831-3

(11). Levin VA, Zhuravskaya TA (2018) Proceedings of the Steklov Institute of Mathematics [Trudy Matematicheskogo instituta im. V.A. Steklova RAN] 300:114-125. https://doi.org/10.1134/S0081543818010091 (in Russian)

(12). Vasil’ev AA, Pinaev AV, Trubitsyn AA, Grachev AYu, Trotsyuk AV, Fomin PA, Trilis AV (2017) Combust. Explos. Shock Waves [Fizika goreniya i vzryva] 53(1):8-14. https://doi.org/10.1134/S0010508217010026 (in Russian)

(13). Thermodynamical Properties of Individual Substances [Termodinamicheskie svojstva individual’nyh veshchestv], Ed. by Glushko VP (1978), Nauka, Moscow. (in Russian)

(14). Bezgin LV, Kopchenov VI, Sharipov AS, Titova NS, Starik AM (2013) Combustion Science and Technology 185(1):62-94. https://doi.org/10.1080/00102202.2012.709562

(15). Godunov SK, Zabrodin AV, Ivanov MYa, Kraiko AN, Prokopov GP (1976) Numerical Solution of Multidimensional Problems of Gasdynamics [CHislennoe reshenie mnogomernyh zadach gazovoj dinamiki] Nauka, Moscow (in Russian).

(16). Voevodin Vl, Antonov A, Nikitenko D, Shvets P, Sobolev S, Sidorov I, Stefanov K, Voevodin Vad, Zhumatiy S (2019) Supercomputing Frontiers and Innovations 6(2):4-11. https://doi.org/10.14529/jsfi190201

(17). Soloukhin RI Shock Waves and Detonation in Gases [Udarnye volny i detonatsiya v gazakh], (1963) GIFML, Moscow (1966) Mono Book, Baltimore. (in Russian)

(18). Lee JHS (2008) The Detonation Phenomenon Cambridge University Press, Cambridge. ISBN-13 978-0-511-41392-6

. Pintgen F, Eckett CA, Austin JM, Shepherd JE (2003) Combustion and Flame 133(3):211-229. https://doi.org/10.1016/S0010-2180(02)00458-3

(20). Kumar DS, Ivin K, Singh AV (2021) Proceedings of the Combustion Institute 38(3):3825-3834. https://doi.org/10.1016/j.proci.2020.08.061

(21). Bull DC, Elsworth JE, Shuff PJ (1982) Combustion and Flame 45:7-22. https://doi.org/10.1016/0010-2180(82)90028-1

(22). Ciccarelli G, Ginsberg T, Boccio J, Economos C., Sato K, Kinoshita M (1994) Combustion and Flame 99(2):212-220. https://doi.org/10.1016/0010-2180(94)90124-4

(23). Taylor BD, Kessler DA, Gamezo VN, Oran ES (2013) Proceedings of the Combustion Institute 34:2009-2016. https://doi.org/10.1016/j.proci.2012.05.045

(24). Levin VA, Zhuravskaya TA (2020) Technical Physics Letters [Pis’ma v ZHTF] 46(2):189-192. https://doi.org/10.1134/S1063785020020248 (in Russian)

(25). Zhuravskaya TA, Levin VA (2020) Fluid Dynamics [Izvestiya RAN. Mekhanika zhidkosti i gaza] 55:488-497. https://doi.org/10.1134/S0015462820040138 (in Russian)

(26). Crane J, Shi X, Singh AV, Tao Y, Wang H (2019) Combustion and Flame 200:44-52. https://doi.org/10.1016/j.combustflame.2018.11.008

(27). Cherif MA, Shcherbanev SA, Starikovskaia SM, Vidal P (2020) Combustion and Flame 217:1-3. https://doi.org/10.1016/j.combustflame.2020.03.014

(28). Shepherd JE (2009) Proceedings of the Combustion Institute 32:83-98. https://doi.org/10.1016/j.proci.2008.08.006

(29). Levin VA, Zhuravskaya TA (2021) Doklady Physics [Doklady Rossijskoj akademii nauk. Fizika, tekhnicheskie nauki] 66:320-324. https://doi.org/10.1134/S1028335821110057

(30). Bhattacharjee RR, Lau-Chapdelaine SSM, Maines G, Maley L, Radulescu MI (2013) Proceedings of the Combustion Institute 34(2):1893-1901. https://doi.org/10.1016/j.proci.2012.07.063

Published

2022-03-16

How to Cite

Levin, V., & Zhuravskaya, T. (2022). Detonation combustion of gas mixture in a plane channel with multiple barriers. Combustion and Plasma Chemistry, 20(2), 93–101. https://doi.org/10.18321/cpc533