Combustion of near stoichiometric hydrogen-air mixtures stabilized near tubular porous burner

Authors

  • V Bykov Karlsruhe Institute of Technology (KIT), Institute of Technical Thermodynamics, Engelbert-Arnold-Strasse 4, Building 10.91 D-76131 Karlsruhe, Germany
  • V. Gubernov P.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskiy ave, Moscow
  • U. Maas Karlsruhe Institute of Technology (KIT), Institute of Technical Thermodynamics, Engelbert-Arnold-Strasse 4, Building 10.91 D-76131 Karlsruhe, Germany

DOI:

https://doi.org/10.18321/cpc20(4)277-288

Keywords:

premixed combustion, laminar strained flames, hydrogen combustion system, thermo-diffusive instability.

Abstract

In this paper, the effect of flame stabilization within tubular burners is investigated numerically. Two main regimes of combustion are observed - stabilized flames near the surface, called attached flame regime, and a detached flame. In the case of the attached flame regime the strain of the flow stabilizes the flame front, which exists in a very wide range of inflow rates. In the case of the detached flame regime joint effect of the strain, the curvature and diverging outflow influences the flame front. Three additional sub-regimes are reported in this case. Steady strain flames are found at relative low pressures and for lean mixtures. Then, with the increase of the inflow rate the steady flame front becomes unstable and flame oscillations emerge in a near stoichiometric mixture composition when the pressure is increased. This loss of stability is extremely sensitive to the ambient pressure, molecular diffusion and chemical kinetic. Further increase of the inflow rate stabilizes the flame again until another critical strain is attained and the flame quenches. The parametric range of these different regimes is outlined and critical inflow velocities are determined.

References

(1) Dixon-Lewis G etc. (1991) Symposium (International) on Combustion 23:305-324. DOI: 10.1016/S0082-0784(06)80274-2

(2) Smooke M (1991) Dynamics of Deflagrations and Reactive Systems 131:125.

(3) Law CK (2010) Combustion physics, Cambridge university press, Cambridge, UK.

(4) Warnatz J, Maas U, Dibble RW, Warnatz J (2006) Combustion, Springer. ISBN-10 3-540-25992-9

(5) Ishizuka S (1989) Comb. Flame 75:367-379. https://doi.org/10.1016/0010-2180(89)90049-7

(6) Kobayashi H, Kitano M (1989) Combus. Flame 76:285-295. https://doi.org/10.1016/0010-2180(89)90111-9

(7) Ogawa Y, Saito N, Liao C (1998) Burner diameter and flammability limit measured by tubular flame burner, in: Symposium (International) on Combustion, 27:3221-3227. https://doi.org/10.1016/S0082-0784(98)80186-0

(8) Kichatov B, Kolobov A, Gubernov V, Bykov V, Maas U (2020) Combustion Theory and Modelling 24:650-665. https://doi.org/10.1080/13647830.2020.1734238

(9) Mosbacher DM, Wehrmeyer JA, Pitz RW, Sung C-J, Byrd JL (2002) Proceedings of the Combustion Institute 29:1479-1486. https://doi.org/10.1016/S1540-7489(02)80181-X

(10) Hu S, Wang P, Pitz RW (2009) Proceedings of the Combustion Institute 32:1133-1140. https://doi.org/10.1016/j.proci.2008.06.183

(11) Hu S, Pitz RW, Wang P (2009) Combust. Flame 156:90-98. https://doi.org/10.1016/j.combustflame.2008.09.004

(12) Wang P, Hu S, Pitz RW (2009) Proceedings of the Combustion Institute 32:1141-1147. https://doi.org/10.1016/j.proci.2008.07.012

(13) Fursenko R, Minaev S, Nakamura H, Tezuka T, Hasegawa S, Kobayashi T, Takase K, Katsuta M, Kikuchi M, Maruta K (2015) Combust. Flame 162:1712-1718. https://doi.org/10.1016/j.combustflame.2014.11.032

(14) Sivashinsky GI (1977) Combustion Science and Technology 15:137-145. https://doi.org/10.1080/00102207708946779

(15) Gubernov V, Kolobov A, Polezhaev A, Sidhu H, Mercer G (2010) Proc. Royal Society A: Mathematical, Physical and Engineering Sciences 466:2747-2769. https://doi.org/10.1098/rspa.2009.0668

(16) Kurdyumov VN, Gubernov VV (2020) Combust. Flame 219 :349-358. https://doi.org/10.1016/j.combustflame.2020.06.014

(17) Nechipurenko S, Miroshnichenko T, Pestovskii N, Tskhai S, Kichatov B, Gubernov V, Bykov V, Maas U (2020) Combust. Flame 213:202-210. https://doi.org/10.1016/j.combustflame.2019.12.016

(18) Gubernov VV, Bykov V, Maas U (2017) Combust. Flame 185:44-52. https://doi.org/10.1016/j.combustflame.2017.07.001

(19) Korsakova AI, Gubernov VV, Kolobov AV, Bykov V, Maas U (2016) Combust. Flame 163:478-486. https://doi.org/10.1016/j.combustflame.2015.10.024

(20) Dixon-Lewis G, Giovangigli V, Kee RJ, Miller JA, Rogg B, Smooke MD, Stahl G, Warnatz J (1991) Dynamics of Deagrations and Reactive Systems: Heterogeneous Combustion, Progress in Astronautics and Aeronautics (AIAA) Washington, DC 131:125-144. https://doi.org/10.2514/5.9781600866043.0125.0144

(21) Stahl G, Warnatz J (1991) Combust. Flame 85:285-299. https://doi.org/10.1016/0010-2180(91)90134-W

(22) Giovangigli V (1990) IM-PACT of Computing in Science and Engineering 2:73-97. https://doi.org/10.1016/0899-8248(90)90004-T

(23) Ern A, Giovangigli V (1994) Multicomponent transport algorithms, vol. 24, Springer, Berlin. https://doi.org/10.1007/978-3-540-48650-3

Published

2022-12-11

How to Cite

Bykov, V., Gubernov, V., & Maas, U. (2022). Combustion of near stoichiometric hydrogen-air mixtures stabilized near tubular porous burner . Combustion and Plasma Chemistry, 20(4), 277–278. https://doi.org/10.18321/cpc20(4)277-288