Chemistry of gas-phase combustion and soot formation

Authors

  • Z.A. Mansurov Institute of Combustion Problems, 172, Bogenbai batyr str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc20(4)263-276

Keywords:

flame front structure, hydrogen atoms, peroxide radicals, soot formation.

Abstract

This article is dedicated to the memory of the teacher, professor, academician of the ATS G.I. Xandopulo. Below is an overview of the work on the study of the structure of the hydrocarbon flame front, carried out under the guidance of G.I. Ksandopulo, as well as data on the study of the formation of fullerenes and carbon nanotubes during the combustion of hydrocarbons, obtained recently at ICP. The article reviews the author’s work on the study of the structure of the front of cold flames of diethyl ether and butane, the pre-flame zone of normal propane flames and soot formation during the combustion of hydrocarbons.Gorenje. The phenomenology, kinetics and mechanism of soot formation, the influence of various factors on the formation of polycyclic aromatic hydrocarbons (PCAU), carbon nanotubes, fullerenes, graphenes and soot are considered.
• Low-temperature zone of the front of hydrocarbon flames
• Cold flames
• Non-isothermal cold diethyl ether flames
• Detection of hydrogen atoms and their distribution in the front of stabilized cold hydrocarbon flames
• Synthesis of carbon nanotubes in combustion mode
• Soot formation during methane combustion in an electric field
• New nanocarbon energy-intensive materials

References

(1) Ksandopulo GI (1980) Flame Chemistry [Himiya plameni]. Chemistry, Moscow, Russia. (in Russian)

(2). Ksandopulo GI, Dubinin VV (1988) Chemistry of gas-phase combustion [Himiya gazofaznogo goreniya]. Chemistry, Moscow, Russia. (in Russian)

(3). Ksandopulo GI, Sagindykov AA, Mansurov ZA (1975) Combustion, Explosion and Shock Waves. [Fizika goreniya i vzryva] 11(6)838-843. https://doi.org/10.1007/BF00744767

(4). Westenberg AA, Fristrom RM (1965) Н-and O-Atom Profiles Measured by ESR in C2 Hydrocarbon-O2 Flames. 10lh Symp. Int. On Combustion. Pittsburgh, Pennsylvania. Р.373. https://doi.org/10.1016/S0082-0784(65)80194-1

(5). Vos HJ, Wisman WH, Schmidt J (1971) Investigation in Flames. J. Magn. Resonance and Related Phenom. Proc. 16th Congress AMPERE, Bucharest.

(6). Friswell NJ, Sutton MM (1972) Chem.Phys.Lett. 15:108. https://doi.org/10.1016/0009-2614(72)87028-3

(7). Fristrom RM (1963) Science. 140(3564):297. https://doi.org/10.1126/science.140.3564.297

(8). Mansurov ZA, Mironenko AV, Zhukova LN, Ksandopulo GI (1978) DAN SSSR [DAN SSSR]. 239:883-885. (in Russian)

(9). Mansurov ZA (2001) Detection of hydrogen atoms and their distribution in the front of stabilized cold flames of hydrocarbons [Obnaruzhenie atomov vodoroda i ih raspredelenie vo fronte stabilizirovannyh holodnyh plamen uglevodorodov]. International Conference on Analytical Chemistry. P.87-90.

(10). Kubitza Ch, Schotter M, Homana KI (1987) Ber. Bunsenges Phys. Chem. 91:695-700. https://doi.org/10.1002/bbpc.19870910703

(11). Songina OA, Zakharov VA (1970) Amperometric titration [Amperometricheskoe titrovanie]. Mir, Moscow, Russia. (in Russian)

(12). Mansurov ZA (1990) Non-isothermal cold hydrocarbon flames [Neizotermicheskie holodnye plamena uglevodorodov]. Abstract Diss. Doc. chemical sciences. Chernogolovka, USSR. P.48. (in Russian)

(13). Gukasyan PS, Mantashyan AA, Sayadyan RA (1976) Combustion, Explosion and Shock Waves [Fizika goreniya i vzryva] 12(5):789. (in Russian) https://doi.org/10.1007/BF00743185

(14). Lignola PO, Reverchon Е (1987) Progress in Energy and Combustion Science 13:75-96. https://doi.org/10.1016/0360-1285(87)90007-4

(15). Mansurov ZA (2009) Formation of fullerenes and carbon nanotubes in hydrocarbon flames. Int. Conference Carbon, Biarritz, France. P.70.

(16). Chenchik DI, Mansurov ZA, Shabanova TA, Orynshaikh T (2007) Obtaining carbon nanotubes in a counter-jet burner [Poluchenie uglerodnyh nanotrubok v gorelke na vstrechnyh struyah]. Proc. of the IV Int. Symp. Combust. and Plasma Chemistry. Almaty, Kazakhstan. P.288-290. (in Russian)

(17). Mansurov ZA, Merkulov AA, Popov VT, Tuleutaev BK, Almazov NS (1994) Chemistry of Solid Fuel [Himiya tverdogo topliva]. 3:83-86. (in Russian)

(18). Mansurov ZA, Tuleutaev VK, Pesterev VI (1989) Petrochemistry [Neftekhimiya]. 29(2):188-191. (in Russian)

(19). Mansurov ZA, Tuleutaev BK, Popov VT (1991) Combustion, Explosion and Shock Waves [Fizika goreniya i vzryva]. 27(1):42-45. (in Russian)

(20). Lijima S (1991) Nature 354:56-58. https://doi.org/10.1038/354056a0

(21). Basha JS, Anand RB (2011) J. Power Energy. 225(3):279-288. https://doi.org/10.1177/2041296710394247

(22). Chehroudi B (2016) Propellant Combustion: Graphene Science Handbook, CRC Press, Boca Raton, Florida, USA. P.391-398. https://doi.org/10.1201/b19488

(23). Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) ACS Nano. 3(2):301-306. https://doi.org/10.1021/nn800593m

(24). Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Aksay IA (2006) J. Phys. Chem. B. 110(17):8535-8539. https://doi.org/10.1021/jp060936f

(25). McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Aksay IA (2007) Chem. Mater. 19(18):4396-4404. https://doi.org/10.1021/cm0630800

(26). Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera Alonso M, Piner RD, Brinson LC (2008) Nature Nanotechnol. 3(6):327-331. https://doi.org/10.1038/nnano.2008.96

(27). Chehroudi B (2011) Recent Patents on Space Technology. 1(2):107-122. https://doi.org/10.2174/1877611611101020107

(28). Sabourin JL, Dabbs DM, Yetter RA, Dryer FL, Aksay IA (2009) ACS Nano. 3(12):3945-3954. https://doi.org/10.1021/nn901006w

(29). Ishitha K, Ramakrishna PA (2014) Int. J. Adv. Eng. Sci. Appl. Math. 6(1-2):76-92. https://doi.org/10.1007/s12572-014-0112-z

(30). Verma S, Ramakrishna PA (2013) J. Propul. Power. 29(5):1214-1219. https://doi.org/10.2514/1.B34809

(31). Verma S, Ramakrishna PA (2010) Combust. Flame. 157(6):1202-1210. https://doi.org/10.1016/j.combustflame.2009.11.017

(32). Di Capua R, Gargiulo V, Alfe M (2016) Eurasian Chem.-Technol. J. 18(4):263-274. https://doi.org/10.18321/ectj480

(33). Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature. 404(1):982-986. https://doi.org/10.1038/35010088

(34). Srinivas G, Burress JW, Ford J, Yildirim T (2011) . Mater. Chem. 30(30):11323. https://doi.org/10.1039/c1jm11699a

(35). Burress JW, Gadipelli S, Ford J, Simmons JM, Zhou W, Yildirim T (2010) Angew. Chemie. 122(47):9086-9088. https://doi.org/10.1002/ange.201003328

(36). Rozhkov AV (2017) Chemistry and Life – XXI century [Himiya i zhizn’ – XXI vek]. 10:2-7. (in Russian)

(37). Seitzhanova MA, Kerimkulova MR, Shyntoreev EB, Azat S, Kerimkulova AR, Mansurov ZA (2015) Chemical Bulletin of Kazakh National University. 2:37-41. https://doi.org/10.15328/cb569

(38). Jandosov JM, Shikina NV, Bijsenbayev MA, Shamalov ME, Ismagilov ZR, Mansurov ZA (2009) Eurasian Chem. Technol. J. 11(3):245-252. https://doi.org/10.18321/ectj287

(39). Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Adv. Phys. 66(3):413-550. https://doi.org/10.1080/00018732.2011.582251

(40). Atamanov MK, Noboru I, Shotaro T, Amrousse R, Tulepov MY, Kerimkulova AR, Hobosyan MA, Hori K, Martirosyan KS, Mansurov ZA (2011) Combust. Sci. Technol. 118(11-12):2003–2011. https://doi.org/10.1080/00102202.2016.1220143

(41). Atamanov MK, Amrouse R, Hori K, Kolesnikov BYa, Mansurov ZA (2018) Combustion, Explosion and Shock Waves [Fizika goreniya i vzryva] 54(3):72-81. (in Russian)

(42). Mansurov ZA (2018) Eurasian Chem.-Technol. J. 20(4):277–281. https://doi.org/10.18321/ectj760

Published

2022-12-11

How to Cite

Mansurov, Z. (2022). Chemistry of gas-phase combustion and soot formation. Combustion and Plasma Chemistry, 20(4), 263–276. https://doi.org/10.18321/cpc20(4)263-276

Most read articles by the same author(s)

<< < 1 2 3 4 > >>