Development of flexible electrodes without application polymer binders based on activated carbons and carbon nanotubes
DOI:
https://doi.org/10.18321/cpc551Keywords:
electrochemistry, activated carbon, carbon nanotubes, pyrolysis, thermal decompositionAbstract
The results of obtaining activated carbons (AC) by the thermal method from plant raw materials of various origins for the manufacture of composite electrodes are presented. A method for obtaining a flexible, ultra-light hybrid electrode with a high specific capacity, consisting of AC and carbon nanotubes (CNTs), is also proposed. The resulting electrodes showed high specific capacitances of about 172 and 119 F/g at scan rates of 5 and 100 mV/s. The electrode material has a higher specific capacitance compared to electrodes made by the traditional method due to the use of AC of domestic origin with a surface area of 2000-3000
m2/g. Also, the fabricated electrodes based on AC/CNT showed low resistance.
References
(1). Bleda-Martínez MJ, Maciá-Agulló JA, Lozano-Castelló D, Morallón E, Cazorla-Amorós D, Linares-Solano A (2005) Carbon 43:2677-2684. https://doi.org/10.1016/j.carbon.2005.05.027
(2). Kim YT, Tadai K, Mitani T (2005) J. Mater. Chem. 15:4914-4921. https://doi.org/10.1039/b511869g
(3). Hu L, Wu H, Mantia F, Yang Y, Cui Y (2010) ACS Nano 4:5843-5848. https://doi.org/10.1021/nn1018158
(4). Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Nano Lett. 9:872-1876. https://doi.org/10.1021/nl8038579
(5). Iijima S (1991) Nature 354:56-58. https://doi.org/10.1038/354056a0
(6). Beguin F, Frackowiak E (2009) Carbons for Electrochemical Energy Storage and Conversion Systems. CRC Press, Boca Raton, USA. Р.529. ISBN 9780429141256.
(7). Fialkov AS (2000) Russ. J. Electrochem. 36:389-413. https://doi.org/10.1007/BF02756949
(8). Landi BJ, Cress CD, Raffaelle RP (2010) Journal of Materials Research. 25:1636-1644. https://doi.org/10.1557/JMR.2010.0209
(9). Ruch P, Cericola D, Foelske-Schmitz A, Kdtz R, Wokaun A (2010) Electrochimica Acta. 55:4412-4420. https://doi.org/10.1016/j.electacta.2010.02.064
(10). Prikhodko NG, Rakhimzhan NB, Smagulova GT, Lesbayev BT, Lesbayev AB, Nazhipkyzy M, Temirgaliyeva TS, Mansurov ZA (2016) Highly efficient collectors of solar energy with nanocarbon coating based on vegetable raw material. International Conference Research on Sustainable and Intelligent Manufacturing. Leiria, Р.347.
(11). Prikhodko NG, Smagulova GT, Rakhimzhan NB, Lesbayev BT, Nazhipkyzy M, Temirgaliyeva TS, Tauasarov EK, Mansurov ZA (2017) Synthesis of Carbonaceous Materials by High-Temperature Pyrolysis of Vegetable Feedstock for Adsorbents of Solar Collectors. Digital proceedings of the 8th European Combustion Meeting. Dubrovnik, Croatia. Р.1580-1583.
(12). Prikhodko N, Rakhimzhan N, Smagulova G, Lesbayev B, Nazhipkyzy M, Temirgaliyeva T, Mansurov Z (2017) Study of Carbonized Vegetable Raw Material as Absorber for Solar Collectors. International Conference on Carbon. Melbourne, Australia Р.408.
(13). Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A (2003) Carbon 41:1765-1775. https://doi.org/10.1016/S0008-6223(03)00141-6
(14). Pierson HO (1993) Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications. New York, USA. Р.384. https://doi.org/10.1016/B978-0-8155-1339-1.50018-9
(15). Kudaibergenov KK, Ongarbayev EK, Mansurov ZA (2012) Int. J. of Biology and Chemistry 3:3-12.
(16). Jandosov J, Mansurov ZA, Bijsenbayev MA, Tulepov MI, Ismagilov ZR, Shikina NV, Ismagilov IZ, Andrievskaya IP (2013) Activation Advanced Materials Research 602-604:85-89. https://doi.org/10.4028/www.scientific.net/AMR.602-604.85
(17). Jandosov JM, Mansurov ZA, BiIsenbayev MA, Kerimkulova AR, Ismagilov ZR, Shikina NV, Ismagilov IZ, Andrievskaya IP (2011) Eurasian Chemico-Technological Journal 13:105-111. https://doi.org/10.18321/ectj74
(18). Rezma S, Assaker IB, Chtourou R, Hafiane A, Deleuze H (2019) Materials Research Bulletin 111:222-229. https://doi.org/10.1016/j.materresbull.2018.11.030
(19). Yu L, Hu L, Anasori B, Liu YT, Zhu Q, Zhang P, Gogotsi Y, Xu B (2018) ACS Energy Letters 3(7):1597-1603. https://doi.org/10.1021/acsenergylett.8b00718
(20). Vicentini R, Nunes W, Freitas BG, Da Silva LM, Soares DM, Cesar R, Rodellac CB, Zanin H (2019) Energy Storage Materials 22:311-322. https://doi.org/10.1016/j.ensm.2019.08.007
(21). Simon P, Gogotsi Y (2008) Nat. Mater. 7:845. https://doi.org/10.1038/nmat2297
(22). Nagai Y, Sugime H, Noda S (2019) Chemical Engineering Science 201:319-324. https://doi.org/10.1016/j.ces.2019.02.038
(23). Meng A, Zhou H, Qin L, Zhang Y, Li Q (2013) J Anal Appl Pyrol. 104:28-37. https://doi.org/10.1016/j.jaap.2013.09.013
(24). Shaoli G, Yingbo X, Zhenfeng T, Shike S, Lan H, Zhao Z, Yonghua H, Junjie W, Maoqi G, Liusi S (2015) J Therm Anal Calorim 120(2):1399-1405. https://doi.org/10.1007/s10973-015-4440-4
(25). Kaushik A, Singh M (2011) Carbohyd Res. 346(1):76-85. https://doi.org/10.1016/j.carres.2010.10.020
(26). Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Fuel 86(12-13):1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
(27). Mora´n JI, Alvarez VA, Cyras VP, Va´zquez A (2008) Cellulose 15(1):149-59. https://doi.org/10.1007/s10570-007-9145-9
(28). Barbieri O, Hahn M, Herzog A, K¨otz R (2005) Carbon 43:1303-1310. https://doi.org/10.1016/j.carbon.2005.01.001