Food waste-derived activated carbon for supercapacitors

Authors

  • М. Nazhipkyzy Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan; Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, United Kingdom
  • A.R. Seitkazinova Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • G.G. Kurmanbaeva Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • А. Talgatkyzy Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • M. Yeleuov Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • A.T. Issanbekova Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • N. Zhilibayeva Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc22(3)269-277

Keywords:

food waste, activated carbon, supercapacitor, orange peel, apple peel, cucumber peel, onion peel

Abstract

This research investigates the utilization of activated carbon synthesized from food waste biomass, specifically, peels of orange, apple, cucumber, and onion, as electrode materials for high-performance supercapacitor applications. The peels were first pre-carbonized at 600 °C and then activated at 700 °C with KOH. The research involved developing a supercapacitor using the synthesized activated carbon as the electrode material and 6 M KOH as the electrolyte. The results indicated that electrodes made from orange peel, apple peel, cucumber peel, and onion peel exhibited specific capacitances of 238.5 F/g, 201.2 F/g, 236.9 F/g, and 118.9 F/g, respectively, at a current density of 1 A/g. When the current density was increased to 2 A/g, the elec-trodes maintained up to 90% of their capacitance.

References

(1). Mensah-Darkwa K, Zequine C, Kahol P, Gupta R (2019) Sustainability 11(2): 414. https://doi.org/10.3390/su11020414

(2). Ehsani A, Parsimehr H (2020) Advances in Colloid and Interface Science: 102263. https://doi.org/10.1016/j.cis.2020.102263

(3). Tadesse MG, Kasaw E, Fentahun B, Loghin E, Lübben JF (2022) Energies 15: 2471. https://doi.org/10.3390/en15072471

(4). Tadesse MG, Kasaw E, Lübben JF (2023) Micromachines 3(14): 330. https://doi.org/10.3390/mi14020330

(5). Tripathy A, Mohanty S, Nayak SK, Ramadoss A (2021) Journal of Environmental Chemical Engineering 9(6): 106398. https://doi.org/10.1016/j.jece.2021.106398

(6). Omokafe SM, Adeniyi AA, Igbafen EO, Oke SR, Olubambi PA (2020) Int J Electrochem Sci 15: 10854-10865. https://doi.org/10.20964/2020.11.10

(7). Lee KC, Lim MSW, Hong ZY, Chong S, Tiong TJ, Pan GT, Huang CM (2021) Energies 14: 4546. https://doi.org/10.3390/en14154546

(8). Rosi M, Fatmizal MNZ, Siburian DH Ismardi A (2023) Indonesian Physical Review 6(1): 85-94. https://doi.org/10.29303/ipr.v6i1.205

(9). Glogic E, Kamal Kamali A, Keppetipola NM, Alonge B, Asoka Kumara GR, Sonnemann G, Toupance T, Cojocaru L (2022) ACS Sustainable Chem Eng 10(46): 15025-15034. https://doi.org/10.1021/acssuschemeng.2c03239

(10). Mehare MD, Deshmukh AD (2021) JMaterSci: Mater Electron 32: 14057-14071. https://doi.org/10.1007/s10854-021-05985-5

(11). Surya K, Michael MS (2021) Biomass and Bioen-ergy 152: 106175. https://doi.org/10.1016/j.biombioe.2021.106175

(12). Erman T, Apriwandi A, Widya SM, Miftah AM., Rika T (2022) Trends in sciences 20: 6396. https://doi.org/10.48048/tis.2023.6396

(13). Tongtong Ji, Kuihua H, Zhaocai T, Jinxiao Li, Meimei W, Jigang Zh, Yang C, Jianhui Qi (2021) IntJElectrochemSci 16: 150653. https://doi.org/10.20964/2021.01.61

(14). Schindra KR, Bishweshwar P, Park M, Bishnu PB (2023) Journal of Analytical and Applied Pyrolysis 175: 106207. https://doi.org/10.1016/j.jaap.2023.106207

(15). Arkhipova EA, Novotortsev RYu, Ivanov AS, Maslakov KI, Savilov SV (2022) Journal of Ener-gy Storage 55: 105699. https://doi.org/10.1016/j.est.2022.105699

(16). Chen J, Liu J, Wu D, Bai X, Lin Y, Wu T, Zhang Ch, Chen D, Li H (2021) Journal of Energy Storage 44: 103432. https://doi.org/10.1016/j.est.2021.103432

(17). Leal da Silva E, Torres M, Portugal P, Wedge A (2021) Journal of Energy Storage 44: 103494. https://doi.org/10.1016/j.est.2021.103494

(18). Nazhipkyzy M, Kurmanbayeva G, Seitkazinova A, Varol EA, Li W, Dinistanova B, Issanbekova A, Mashan T (2024) Nanomaterials 14: 686. https://doi.org/10.3390/nano14080686

Published

2024-10-20

How to Cite

Nazhipkyzy М., Seitkazinova, A., Kurmanbaeva, G., Talgatkyzy А., Yeleuov, M., Issanbekova, A., & Zhilibayeva, N. (2024). Food waste-derived activated carbon for supercapacitors. Combustion and Plasma Chemistry, 22(3), 269–277. https://doi.org/10.18321/cpc22(3)269-277