Morphological and structural differences of magnetite nanoparticles synthesized by solution combustion method using different fuels
DOI:
https://doi.org/10.18321/cpc22(3)231-239Keywords:
magnetite nanoparticles, solution combustion, self-ignition, glycine, ureaAbstract
This paper investigated the morphological and structural features of magnetite nanoparticles synthesized by solution combustion method using different fuels, urea and glycine. The obtained results have demonstrated significant differences in the morphology and crystallinity of the nanoparticles depending on the type of fuel. Urea promotes the formation of homogeneous and finely dispersed nanoparticles with a high degree of crystallinity, whereas glycine leads to the formation of agglomerated particles with carbon monoxide impurities. The results of X-ray phase analysis confirmed the successful production of magnetite with different degree of crystallinity and phase composition depending on the fuel used. The choice of fuel exhibited a significant influence on the quality and properties of magnetite nanoparticles, highlighting the need to optimize the synthesis conditions for different applications.
References
(1). Métioui A. (2022) Journal ISSN 2766: 2276. https://doi.org/10.37871/jbres1561
(2). Niculescu AG, Chircov C, Grumezescu AM (2022) Methods 199: 16-27. https://doi.org/10.1016/j.ymeth.2021.04.018
(3). Rukhsar M, Zubair A, Abdur R, Hassan Z, Mujeeb U, Hassan AH (2022) Crystals 12(12): 1809. https://doi.org/10.3390/cryst12121809
(4). Shukla S, Khan R, Daverey A (2021) Environmental Technology & Innovation 24: 101924. https://doi.org/10.1016/j.eti.2021.101924
(5). Nguyen MD, Tran H, Xu S, Lee R (2021) Applied Sciences 11(23): 11301. https://doi.org/10.3390/app112311301
(6). Ganapathe LS, Mohamed MA, Yunus RM, Berhanuddin DD (2020) Magnetochemistry 6(4): 68. https://doi.org/10.3390/magnetochemistry6040068
(7). Rezaei B, Yari P, Sanders SM, Wang H, Chugh V K, Liang S, Mostufa S, Xu K, Wang JP, Jenifer GP, Wu K (2024) Small 20(5): 2304848. https://doi.org/10.1002/smll.202304848
(8). Roy SD, Das KC, Dhar SS (2021) Inorganic Chemistry Communications 134: 109050. https://doi.org/10.1016/j.inoche.2021.109050
(9). Liu M, Ye Y, Ye J, Gao T, Wang D, Chen G, Song Z (2023) Magnetochemistry 9(4): 110. https://doi.org/10.3390/magnetochemistry9040110
(10). Roostaee M, Sheikhshoaie I (2020) Current Biochemical Engineering 6(2): 91-102. https://doi.org/10.2174/2212711906666200316163207
(11). Kulpa-Koterwa A, Ossowski T, Niedziałkowski P (2021) Materials 14(24): 7725. https://doi.org/10.3390/ma14247725
(12). Jjagwe J, Olupot PW, Kulabako R, Carrara S (2024) Heliyon. https://doi.org/10.1016/j.heliyon.2024.e29743
(13). Ershadi M, Javanbakht M, Kiaei Z, Torkzaban H, Mozaffari SA, Ajdari FB (2022) Journal of Energy Storage 46: 103924. https://doi.org/10.1016/j.est.2021.103924
(14). Rafie SF, Sayahi H, Abdollahi H, Abu-Zahra N (2023) Materials Today Communications 37: 107589. https://doi.org/10.1016/j.mtcomm.2023.107589
(15). Ni X, Zhang J, Zhao L, Wang F, He H, Dramou P (2022) Journal of Physics and Chemistry of Solids 169: 110855. https://doi.org/10.1016/j.jpcs.2022.110855
(16). Dheyab MA, Aziz AA, Jameel MS, Khaniabadi PM, Mehrdel B (2020) Ultrasonics sonochemistry 64: 104865. https://doi.org/10.1016/j.ultsonch.2019.104865
(17). Yulfriska N, Affandi Z, Dwiridal L, Ramli R (2020) Journal of Physics: Conference Series. – IOP Publishing 1481(1): 012006. https://doi.org/10.1088/1742-6596/1481/1/012006
(18). Granath T, Löbmann P, Mandel K (2021) Particle & Particle Systems Characterization 38(3): 2000307. https://doi.org/10.1002/ppsc.202000307
(19). Said M, Hariani PL, Apriani I (2021) IOP Conference Series: Earth and Environmental Science. – IOP Publishing 926(1): 012050. https://doi.org/10.1088/1755-1315/926/1/012050
(20). Zhao J, Zhang H, He J, Zhou L, Luo C, Li X, Hu Y, Liu Y, Yang D, Cui X (2023) Vacuum 218: 112659. https://doi.org/10.1016/j.vacuum.2023.112659
(21). Hu P, Chang T, Chen WJ, Deng J, Li SL, Zuo YG, Kang L, Yang F, Hostetter M, Volinsky AA (2019) Journal of Alloys and Compounds 773: 605-611. https://doi.org/10.1016/j.jallcom.2018.09.238
(22). Torres-Gómez N, Nava O, Argueta-Figueroa L, García-Contreras R, Baeza-Barrera A, Vilchis-Nestor A (2019) Journal of Nanomaterials 1: 7921273. https://doi.org/10.1155/2019/7921273
(23). Zak AK, Shirmahd H, Mohammadi S, Banihashemian SM (2020) Materials Research Express 7(2): 025001. https://doi.org/10.1088/2053-1591/ab6e3c
(24). Rahmawati R, Kaneti YV, Taufiq A, Sunaryono Yuliarto B, Suyatman N, Kurniadi D, Hossain M SA, (2018) Bulletin of the Chemical Society of Japan 91(2): 311-317. https://doi.org/10.1246/bcsj.20170317
(25). Ba-Abbad MM, Benamour A, Ewis D, Mohammad AW, Mahmoudi E (2022) Jom 74(9): 3531-3539. https://doi.org/10.1007/s11837-022-05380-3
(26). Hadadian S, Masoudpanah SM, Alamolhoda S (2019) Journal of Superconductivity and Novel Magnetism 32: 353-360. https://doi.org/10.1007/s10948-018-4685-9
(27). Wang X, Qin M, Fang F, Jia B, Wu H, Qu X, Volinsky AA (2017) Journal of Alloys and Compounds 719: 288-295. https://doi.org/10.1016/j.jallcom.2017.05.187