Obtaining and investigating a composite based on porous graphene-like carbon with titanium nitride nanoparticles for lithium-sulfur batteries
DOI:
https://doi.org/10.18321/cpc22(3)213-221Keywords:
graphene-like porous carbon, titanium nitride, sulfur, lithium-sulfur batteries, lithium polysulfidesAbstract
Lithium–sulfur batteries (LSBs) are one of the promising energy storage systems due to their extremely high energy density (2600 Wh/kg) and theoretical specific capacity (1675 mAh/g). Their promise is also due to the low cost and wide availability of sulfur, which is also environmentally friendly and non-toxic. However, the commercialization of LSBs and their industrial application are hampered by the low electrical conductivity of sulfur, the shuttle effect of lithium polysulfides, and significant volumetric expansion of the electrode during long-term charge-discharge cycling. These problems lead to the loss of active material, rapid decrease in discharge capacity, and low stability of the LSB cell during long-term cycling. To overcome these problems, a composite based on graphene-like porous carbon (GPC) obtained from biomass waste and titanium nitride (TiN) particles was developed, investigated, and tested in this study. This composite was used as a porous conductive matrix for sulfur immobilization and preparation of sulfur cathodes. When studying the electrochemical characteristics, the developed cathodes based on GPC-TiN@S demonstrated a high value of the initial discharge capacity (1154 mAh/g) with its average decrease by 0.1% per cycle for 100 cycles at a current density of 0.2 C. The obtained results confirm that the composite based on carbon obtained from biomass with deposited TiN particles is a promising material for the preparation of high-performance sulfur cathodes.
References
(1). Yin YX, Xin S, Guo YG, Wan LJ (2013) Angew. Chem., Int. Ed. 52: 13186-13200. https://doi.org/10.1002/anie.201304762
(2). Manthiram A, Chung SH, Zu C (2015) Adv.Mater 27: 1980-2006. https://doi.org/10.1002/adma.201405115
(3). Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q (2020) ACS Cent. Sci 6(7). https://doi.org/10.1021/acscentsci.0c00449
(4). Qie L, Manthiram A (2016) ACS Energy Lett 1: 46-51. https://doi.org/10.1021/acsenergylett.6b00033
(5). Seh ZW (2013) Nat. Commun 4. https://doi.org/10.1038/ncomms2327
(6). Peled E, Shekhtman I, Mukra T, Goor M, Belenkaya I, Golodnitsky D (2018) J. Electrochem. Soc 165: A6051-A6057. https://doi.org/10.1149/2.0101801jes
(7). Zhou G, Paek E, Hwang GS, Manthiram A (2015) Nat.Commun 6. https://doi.org/10.1038/ncomms8760
(8). Lei T (2018) Joule 2: 2091-2104. https://doi.org/10.1016/j.joule.2018.07.022
(9). Shen Q, Huang L, Chen G, Zhang X, Chen Y (2020) J.AlloysCompd 845: 155543. https://doi.org/10.1016/j.jallcom.2020.155543
(10). Xu G, Yan Q, Bai P, Dou H, Nie P, Zhang X (2019) Chemistry Select 4: 698-704. https://doi.org/10.1002/slct.201803285
(11). Qian J, Jin B, Li Y, Zhan X, Hou Y, Zhang Q (2021) J. Energy Chem 56: 420-437. https://doi.org/10.1016/j.jechem.2020.08.026
(12). Yang Z, Li R, Deng Z (2018) ACS Appl. Mater. Interfaces 10: 13519-13527. https://doi.org/10.1021/acsami.8b01163
(13). Li G (2015) AdvEnergyMater 5: 1-8. https://doi.org/10.1002/aenm.201500878
(14). Benítez A, Amaro-Gahete J, Chien YC, Caballero A, Morales J, Brandell D (2022) Renew. Sustain. Energy Rev 154. https://doi.org/10.1016/j.rser.2021.111783.
(15). Zhang Y (2021) Prog.Nat.Sci.Mater.Int 31: 501-513. https://doi.org/10.1016/j.pnsc.2021.07.003
(16). Liu X, Huang JQ, Zhang Q, Mai L (2017) Adv. Mater 29. https://doi.org/10.1002/adma.201601759
(17). Zhu J, Zhu P, Yan C, Dong X, Zhang X (2019) Prog. Polym 90: 118-163. https://doi.org/10.1016/j.progpolymsci.2018.12.002
(18). Liu P, Wang Y, Liu J (2019) J.EnergyChem 34: 171-185. https://doi.org/10.1016/j.jechem.2018.10.005
(19). Chen Z, Lv W, Kang F, Li J (2019) JPhysChemC 123: 25025-25030. https://doi.org/10.1021/acs.jpcc.9b04670
(20). Sun L (2024) J. Colloid Interface Sci 653: 1694-1703. https://doi.org/10.1016/j.jcis.2023.09.167
(21). Zha C (2020) Energy Storage Mater 26: 40-45. https://doi.org/10.1016/j.ensm.2019.12.032
(22). Daulbayev C (2021) Appl.Surf.Sci 549: 149-176. https://doi.org/10.1016/j.apsusc.2021.149176
(23). Gray BM, Hector AL, Jura M, Owen JR, Whittam J (2017) J.Mater.Chem.A. 5: 4550-4559. https://doi.org/10.1039/C6TA08308K
(24). Stobinski L (2014) J.ElectronSpectros.Relat.Phenomena 195: 145-154. https://doi.org/10.1016/j.elspec.2014.07.003
(25). Zhang X (2023) ChemEngJ 460: 141607. https://doi.org/10.1016/j.cej.2023.141607
(26). Peng HJ (2014) AdvMaterInterfaces 1: 1-10. https://doi.org/10.1002/admi.201400227
(27). Wei W, Du P, Liu D, Wang Q, Liu P (2018) Nanoscale 10: 13037-13044. https://doi.org/10.1039/C8NR01530A