Effect of pore size of carbon materials on the performance of hybrid supercapacitors in aqueous redox electrolyte
DOI:
https://doi.org/10.18321/cpc22(3)205-211Keywords:
porous structure, hybrid capacitor, iodides, double electric layer, energy storage devicesAbstract
This paper investigates the effect of the porous structure of carbon materials on the performance of hybrid supercapacitors using an aqueous redox electrolyte of 5M NaNO3+0.5M NaI. For this purpose, three different carbon materials including activated carbon from rice husk, carbon from magnesium citrate and carbon obtained using templat silica were synthesized. Optimization of the porous structure of the positive electrode achieved a specific capacitance of 403 F/g and a specific energy of 30 W h/kg at a current density of 0.5 A/g for the positive electrode cell with an average pore size of 3.4 nm. Experimental results showed that the pore size and surface area significantly affect the iodide retention capacity, which in turn determines the capacitance and specific energy of the hybrid supercapacitor. The use of activated carbon with pores less than 1 nm allowed achieving a high energy efficiency of 79%.
References
(1). Liu N, Huo K (2013) Sci. Rep 3: 1919 https://doi.org/10.1038/srep01919.
(2). Simon P, Gogotsi Y (2008) Nat. Mater 7(11): 845-54. https://doi.org/10.1038/nmat2297.
(3). Kim BK, Sy S, Yu A, Zhang J (2014) John Wiley & Sons, Ltd: 1-25. https://doi.org/10.1002/9781118991978.hces112
(4). Conway BE (2013) Electrochemical supercapacitors: scientific fundamentals and technological applications, New York: Springer Science & Business Media. ISBN: 978-1-4757-3060-9.
(5). Buiel E (2006) Development of Lead-Carbon Hybrid Battery/Super capacitors / Proc. Advanced. Capacitor World Summit San Diego, CA P. 7-9.
(6). Yamazaki S, Ito T, Murakumo Y, Naitou M, Shimooka T, Yamagata M, Ishikawa M (2016) Journal of Power Sources 326: 580-586. https://doi.org/10.1016/j.jpowsour.2016.04.021.
(7). Gómez-Romero P, Ayyad O, Suárez-Guevara J, Muñoz-Rojas D (2010) Journal of Solid State Electrochemistry 14(11): 1939-1945. https://doi.org/10.1007/s10008-010-1076-y.
(8). Akinwolemiwa B, Wei C, Yang Q, Yu L, Xia L, Hu D, Peng C, Chen GZ (2018) Journal of The Electrochemical Society 165: A4067-A4076. https://doi.org/10.1149/2.0031902jes
(9). Lu Z, Chang Z, Zhu W, Sun X (2011) Chem Commun 47: 9651-9653.https://doi.org/10.1039/c1cc13796d
(10). Lee J, Kruner B, Tolosa A, Sathyamoorthi S, Kim D, Choudhury S, Seo K-H, Presser V (2016) Energy Environ. Sci 9: 3392-3398. https://doi.org/10.1039/C6EE00712K.
(11). Senthilkumar ST, Selvan RK, Melo JS (2013)J. Mater. Chem. A 1: 12386-12394. https://doi.org/10.1039/c3ta11959a.
(12). Zang X, Shen C, Sanghadasa M, Lin L (2019) ChemElectroChem 6(4): 976–988. https://doi.org/10.1002/celc.201801225.
(13). Qin W, Zhou N, Wu C, Xie M, Sun H, Guo Y, Pan L (2020) ACS Omega 5(8): 3801-3808. https://doi.org/10.1021/acsomega.9b04063.
(14). Amiri M, Bélanger D (2021) ChemSusChem 14(12): 2487-2500. https://doi.org/10.1002/cssc.202100550.
(15). Abbas Q, Nürnberg P, Ricco R, Carraro F, Gollas B, Schönhoff M (2021) Advanced Energy and Sustainability Research 2(12): 2100115. https://doi.org/10.1002/aesr.202100115.
(16). Luo J, Xiao G, Ding D, Chong X, Ren J, Bai B (2021) CeramicsInternational 47(21): Р. 29607-29619. https://doi.org/10.1016/j.ceramint.2021.07.130
(17). Lota G, Frackowiak E (2009) Electrochemistry Communications 11(1): 87-90. https://doi.org/10.1016/j.elecom.2008.10.026.
(18). Pavlenko VV, Temirkulova KM, Zakharov AYu, Aubakirov YA, Ayaganov ZhE (2024) Eurasian Chemico-Technological Journal 25(4): 201-210. https://doi.org/10.18321/ectj1542.
(19). Suo LM, Borodin O, Gao T, Olguin M, Ho J, Fan XL, Luo C, Wang CS, Xu K (2015) Science 350 6263): 938-943. https://doi.org/10.1126/science.aab1595.
(20). Shao Y, El-Kady MF, Sun J, Li Y (2018) Chemical Reviews 118(18): 9233–9280. https://doi.org/10.1021/acs.chemrev.8b00252.