RF-sputtering porous LSCF thin films from oxide nanopowders targets for SOFC cathode application
DOI:
https://doi.org/10.18321/cpc22(3)197-203Keywords:
cathode, solid oxide fuel cells, hydrogen, energy efficiency, nanocrystalline filmsAbstract
This paper demonstrates that porous nanocrystalline La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) thin films with nanocrystalline microstructures can be obtained through RF sputtering using an LSCF composite target. The composition La0.6Sr0.4Co0.8Fe0.2O3 was selected for its higher electronic and ionic conductivity, lower activation energy, and high electrocatalytic activity. LSCF thin films were deposited at a temperature of 550°C onto the surface of a commercial yttria-stabilized zirconia (YSZ) electrolyte support. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that the LSCF thin films exhibit high porosity and a nanocrystalline structure, making them promising candidates for use in medium-temperature or low-temperature solid oxide fuel cell (SOFC) cathodes.
References
(1). Bazarbayev B.P., Beissenov R.E. (2024) Progress and problems of cathode materials of SOFC. Materials of the republican scientific and practical conference of young scientists and students «XXI CENTURY: SCIENCE AND INNOVATION», dedicated to the 125th anniversary of Academician Kanysh Satpayev, Taldykorgan. P. 12-16.
(2). Dwivedi S (2020) Hydrogen Energy 44: 23988-24013. https://doi.org/10.1016/j.ijhydene.2019.11.234
(3). Khan MZ, Song RH, Mehran MT, Lee SB, Lim TH (2020) Ceramics International 47: 5839-5869. https://doi.org/10.1016/j.ceramint.2020.11.002
(4). Wang Q, Fan H, Xiao Y, Zhanga Y (2021) Journal Rare Earths 40: 1668-1681. https://doi.org/10.1016/j.jre.2021.09.003
(5). Tang R, Men X, Zhang L, Bi L, Liu Z (2023) Ceramics International 49: 26380-26390. https://doi.org/10.1016/j.ceramint.2023.05.174
(6). Bian L, Liu C, Li S, Peng J, Li X, Guan L, Liu Y, Peng JH, An S, Song X (2020) International Journal of Hydrogen Energy 45: 19813-19822. https://doi.org/10.1016/j.ijhydene.2020.05.117
(7). Wu M, Cai H, Jin F, Sun N, Xu J, Zhang L, Han X, Wang S, Su X, Long W, Wang L, Zhang L (2021) Journal of the European Ceramic Society 41: 2682-2690. https://doi.org/10.1016/j.jeurceramsoc.2020.11.035
(8). Khan MZ, Song RH, Mehran MT, Lee SB, Lim TH (2020) Ceramics International 47: 5839-5869. https://doi.org/10.1016/j.ceramint.2020.11.002
(9). Bisenova MA, Beissenov RE, Mereke AL, Beissenova EE (2021) Development of porous structures based on semiconductor oxides 1: 43-51. (In Russian). https://doi.org/10.18321/cpc409
(10). Beissenov RE, Umirzakov AG, Kuspanov ZB, Beissenova EE, Kudaibergenov AD (2022) Production of porous nickel based half-cell solid oxide fuel cell and a thin-film yttrium oxide stabilized with zirconium dioxide electrolyte 2: 123-132. (In Russian). https://doi.org/10.18321/cpc536
(11). Golkhatmi SZ, Asghar MI, Lund PD (2022) Renewable and Sustainable Energy Reviews 161: 1123-1139. https://doi.org/10.1016/j.rser.2022.112339
(12). Xu K, Pei K, Zhao B, Zhao Y, Niu Q, Chen Y (2021) International Journal of Hydrogen Energy 46: 32242-32249. https://doi.org/10.1016/j.ijhydene.2021.06.224
(13). Ke L, Pang S, Long C, Fang T (2023) Chemical Engineering Journal 463: 142. https://doi.org/10.1016/j.cej.2023.142509