Efficiency of plasma technology for preparing solid fuels for combustion combustion
DOI:
https://doi.org/10.18321/cpc22(3)169-178Keywords:
plasma preparation for combustion, solid fuel, combustible two-phase fuel, plasma-coal burner, numerical study, experimentAbstract
A thermodynamic analysis was performed, which made it possible to find the operating parameters of plasma technology for preparing solid fuels for combustion. Kinetic calculations of plasma ignition and stable combustion of a pulverized coal torch were performed using the PlasmaKinTherm program. Profiles of temperatures, velocities and concentrations of combustible gas and coal particles along the length of the reaction zone of a plasma-coal burner were obtained. In experiments on plasma preparation of thermal coal for combustion, stable ignition of a pulverized coal torch was obtained, the temperature and composition of the resulting highly reactive two-component fuel were measured, and the degree of carbon conversion of high-ash Ekibastuz coal was determined. A comparison of the results of experiments and calculations showed acceptable agreement. It has been shown that the main product of plasma ignition and stabilization of coal combustion is a highly reactive two-component fuel, and the harmful emissions concentrations, nitrogen and sulfur oxides, are two orders of magnitude lower than in thermal power plants’ flue gases.
References
(1). Society for Mining, Metallurgy & Exploration (2022) Coal’s Importance to the World. https://www.smenet.org/What-We-Do/Technical-Briefings/Coal-s-Importance-in-the-US-and-Global-Energy-Supp
(2). Kellow G (2019) Peabody: 1-4. https://www.peabodyenergy.com/Peabody/media/MediaLibrary/Industry%20Insights/CERAWeek-2019-Essay.pdf
(3). Future coal (2024) Powering the globe. https://www.worldcoal.org/sustainable-societies/improving-access-energy
(4).Messerle VE, Karpenko EI, Ustimenko AB (2014) Fuel 126: 294-300. http://dx.doi.org/10.1016/j.fuel.2014.02.047
(5). Messerle VE, Karpenko EI, Ustimenko AB (2013) Fuel Process. Technol. 107: 93-98. https://doi.org/10.1016/j.fuproc.2012.07.001
(6). Gorokhovski MA, Jankoski Z, Lockwood FC, Karpenko EI, Messerle VE, Ustimenko AB (2007) Combustion Science and Technology 179 (10): 2065-2090. https://doi.org/10.1080/00102200701386115
(7). Messerle VE, Ustimenko AB, Tastanbekov AK (2022) Thermophysics and Aeromechanics 29(2): 295-310. https://doi.org/10.1134/S0869864322020135
(8). Kanilo PM, Kazantsev VI, Rasyuk NI, Schuenemann K, Vavriv DM (2003) Fuel 82: 187-193. https://doi.org/10.1016/S0016-2361(02)00201-6
(9). Rogovaya M. (2024) Journal «Kommersant Science» [Zhurnal Kommersant Nauka]. 3: 22. https://www.kommersant.ru/doc/6559928
(10). Kuznetsov VA, Kumkova II, Lerner AS, Popov VE (2012) J. of Phys.: Conference Ser 406: 012023. https://doi.org/10.1088/1742-6596/406/1/012023
(11). Ma Y, Qi H, Zhang J, Cui P, Zhu Zh, Yinglong Wang Y (2023) J. of Clean. Production 384: 135662. https://doi.org/10.1016/j.jclepro.2022.135662
(12). Popov VE, Subbotin DI, Surov AV, Popov SD, Serba EO, Godina EP, Kiselev AA (2019) J. of Phys.: Conference Ser 1243: 012010. https://doi.org/10.1088/1742-6596/1243/1/012010
(13). Gorokhovski M, Karpenko EI, Lockwood FC, Messerle VE, Trusov BG, Ustimenko AB (2005) Journal of the Energy Institute 78 (4): 157–171. https://doi.org/10.1179/174602205X68261
(14). Messerle VE, Ustimenko AB (2020) IEEE Transactions on Plasma Science 48(2): 343–349. https://doi.org/10.1109/TPS.2019.2956847.
(15). Jankoski Z, Lockwood FC, Messerle VE, Karpenko EI, Ustimenko AB (2004) Thermophysics and Aeromechanics 11(3): 461-474.