Production and optimization of activated carbon from plant waste with high specific surface area for moisture-saving applications in agriculture

Authors

  • E.O. Doszhanov Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • A.N. Sabitov Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • K.A. Saurykova Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • Z.А. Mansurov Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • M.S. Kurmanbaeva Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • O.M. Doszhanov Almaty Technological University, 100, Tole bi str., Almaty, Kazakhstan
  • M.K. Atamanov Kazakh National Women‘s Teacher Training University, 11, Gogol str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc22(3)159-167

Keywords:

activated carbon, agricultural waste, water-retaining substrate, porous structure, adsorption properties

Abstract

In conditions of water shortage, sustainable agricultural development requires the use of water-saving technologies, including the use of water-retaining substrates based on activated carbon. In this work, the textural and adsorption characteristics of activated carbon obtained from plant waste were studied at different mass ratios of the sorbent and KOH (1:1, 1:2, 1:3 and 1:4). The aim of the study was to determine the optimal activation conditions for creating a material with a high specific surface area and a developed porous structure. The results showed that the largest pore volume (1.6 cm3/g) and a high degree of microporosity are achieved at a ratio of 1:3, which is confirmed by the analysis of pore distribution using the DFT and BJH methods. FTIR spectroscopy revealed the presence of functional groups (O–H, C=O and C–O) that contribute to water conservation. The differential pore volume distribution (dv(r), cm3/Å/g) also demonstrated that at a ratio of sorbent and KOH (1:3), the sample structure optimally combines micropores and mesopores, which increases the adsorption capacity of carbon.

References

(1). Chen L, Chen Q, Rao P, Yan L, Shakib A, Shen G (2018) Sustainability 10(8): 2740. https://doi.org/10.3390/su10082740

(2). Eftychia GK, Roupas ND, Markou KB (2017)Minerva Med 108(2): 136-146. https://doi.org/10.23736/S0026-4806.17.04923-0

(3). Akhinzhanova A, Sultahan S, Tauanov Z, Mansurov Z, Capobianachi A, Amrousse R, Atamanov M, Q.-L (2023) Combustion and Flame 250: 112672. https://doi.org/10.1016/j.combustflame.2023.112672

(4). El-Nakhel C, Pannico A, Graziani G, Giordano M, Kyriacou MC, Ritieni A, De Pascale S, Rouphael Y (2021) Agronomy 11: 857. https://doi.org/10.3390/agronomy11050857

(5). Wain RL, Whitford PN (1980) Annals of Appied Biology 96(2): 255-260. https://doi.org/10.1111/j.1744-7348.1980.tb02986.x

(6). Taurbekov A, Fierro V, Kuspanov Z, Abdisattar A, Atamanova T, Kaidar B, Mansurov Z, Atamanov M (2024) Journal of Environmental Chemical Engineering 12(5): 113262. https://doi.org/10.1016/j.jece.2024.113262

(7). Taurbekov A, Abdisattar A, Atamanov M, Yeleuov M, Daulbayev C, Askaruly K, Kaidar B, Mansurov Z, Castro-Gutierrez J, Celzard A, Fierro V, Atamanova T (2023) Journal of Composites Science 7(10): 444. https://doi.org/10.3390/jcs7100444

(8). Halka M, Klimek-Chodacka M, Smoleń S, Baranski R, Ledwożyw-Smoleń I, Sady W (2018) Physiol. Plant 164: 290-306. https://doi.org/10.1111/ppl.12733

(9). Taurbekov A, Abdisattar A, Atamanov M, Kaidar B, Yeleuov M, Joia R, Amrousse R, Atamanova T (2023) Journal of Composites Science 7(11): 452. https://doi.org/10.3390/jcs7110452

(10). Lesbayev B, Rakhymzhan N, Ustayeva G, Maral Y, Atamanov M, Auyelkhankyzy M, Zhamash A (2024) Journal of Composites Science 8(2): 74. https://doi.org/10.3390/jcs8020074

(11). Naderi M, Tarleton S (2015) Progress in Filtration and Separation, Academic Press: 585-608. https://doi.org/10.1016/B978-0-12-384746-1.00014-8

(12). Yang SX, Fu SJ, Wang ML (1991) AnalChem 63(24): 2970-2973. https://doi.org/10.1021/ac00024a031

(13). Sabitov A, Atamanov M, Doszhanov O, Saurykova K, Tazhu K, Kerimkulova A, Orazbayev A, Doszhanov Y (2024) Molecules 29(16): 3786. https://doi.org/10.3390/molecules29163786

(14). Ilyin YV, Kudaibergenov KK, Sharipkhanov SD, Mansurov ZA, Zhaulybayev AA, Atamanov MK (2023) Eurasian Chemico-Technological Journal 25(1): 33-38. https://doi.org/10.18321/ectj1493

(15). Azat S Development of the technology for fusicoccin preparation using nanocarbon sorbents and study of its biological and cytotoxic activity: PhD Dissertation, Almaty: Al-Farabi Kazakh National University, Kazakhstan. Р. 109.

(16). Bardestani R, Patience GS, Kaliaguine S (2019) The Canadian Journal of Chemical Engineering 97(11): 2781-2791. https://doi.org/10.1002/cjce.23632

(17). McLaren RL, Laycock CJ, Brousseau E, Owen GR (2021) New Journal of Chemistry 45(27): 12071-12080. https://doi.org/10.1039/D1NJ01702K

Downloads

Published

2024-10-20

How to Cite

Doszhanov, E., Sabitov, A., Saurykova, K., Mansurov, Z., Kurmanbaeva, M., Doszhanov, O., & Atamanov, M. (2024). Production and optimization of activated carbon from plant waste with high specific surface area for moisture-saving applications in agriculture. Combustion and Plasma Chemistry, 22(3), 159–167. https://doi.org/10.18321/cpc22(3)159-167

Most read articles by the same author(s)

1 2 > >>