Control of detonation combustion of hydrogen-air mixture

Authors

  • V.A. Levin Institute of Mechanics, Lomonosov Moscow State University, Michurinskiy ave. 1, Moscow, Russia
  • T.A. Zhuravskaya Institute of Mechanics, Lomonosov Moscow State University, Michurinskiy ave. 1, Moscow, Russia

DOI:

https://doi.org/10.18321/cpc22(3)149-157

Keywords:

stoichiometric hydrogen-air mixture, detonation wave, plane channel, detonation control

Abstract

The paper presents the results of numerical studies carried out to determine new methods for controlling the detonation combustion of a stoichiometric hydrogen-air mixture in a plane channel. A number of design solutions have been proposed that enhance the destructive effect of multiple obstacles located in the channel on the propagating detonation wave. The influence of additions of hydrogen peroxide and helium to the combustible mixture on the parameters of the detonation wave has been studied in order to decrease the temperature of the combustion products without significantly changing the size of the detonation cell and reducing the wave velocity.

References

(1). Vasil’ev AA, Pinaev AV, Trubitsyn AA, Grachev AYu, Trotsyuk AV, Fomin PA, Trilis AV (2017) Combust. Explos. Shock Waves 53: 8-14. https://doi.org/10.1134/S0010508217010026

(2). Bedarev IA, Fedorov AV (2017) Journal of Physics: Conference Series 894: 012008. https://doi.org/10.1088/1742-6596/894/1/012008

(3). Tropin DA, Fedorov AV (2018) Combust. Explos. Shock Waves 54: 200-206. https://doi.org/10.1134/S0010508218020090

(4). Obara T, Sentanuhady J, Tsukada Y, Ohyagi S (2008) Shock Waves 18: 117-127. https://doi.org/10.1007/s00193-008-0147-9

(5). Medvedev SP, Khomik SV, Gel’fand BE (2009) Russian Journal of Physical Chemistry B 3: 963-970. https://doi.org/10.1134/S1990793109060165

(6). Qin H, Lee JHS, Wang Z, Zhuang F (2015) Proceeding the Combustion Institute 35(2): 1973-1979. https://doi.org/10.1016/j.proci.2014.07.056

(7). Sharypov OV, Pirogov YA (1995) Comb. Expl. Shock Waves 31: 466-470. https://doi.org/10.1007/BF00789368

(8). Teodorczyk A, Lee JHS (1995) Shock Waves 4: 225-236. https://doi.org/10.1007/BF01414988

(9). Radulescu MI, Lee JHS (2002) Combustion and Flame 131(1-2): 29-46. http://dx.doi.org/10.1016/S0010-2180(02)00390-5

(10). Bivol GYu, Golovastov SV, Golub VV (2018) Shock Waves 28: 1011-1018. https://doi.org/10.1007/s00193-018-0831-3

(11). Tropin D, Temerbekov V (2022) International Journal of Hydrogen Energy 47(87): 37106-37124. https://doi.org/10.1016/j.ijhydene.2022.08.256

(12). Yang T, He Q, Ning J, Li J (2022) International Journal of Hydrogen Energy 47(25): 12711-12725. https://doi.org/10.1016/j.ijhydene.2022.01.230

(13). Levin VA, Zhuravskaya TA (2020) Tech. Phys. Lett 46(2): 189-192. https://doi.org/10.1134/S1063785020020248

(14). Zhuravskaya TA, Levin VA (2020) Fluid Dynamics 55: 488-497. https://doi.org/10.1134/S0015462820040138

(15). Levin VA, Zhuravskaya TA (2018) Proc. Steklov Inst. Math. 300: 114-125. https://doi.org/10.1134/S0081543818010091

(16). Levin VA, Zhuravskaya TA (2023) Combustion Science and Technology 195(7): 1-13. https://doi.org/10.1080/00102202.2018.1557641

(17). Levin VA, Zhuravskaya TA (2021) Doklady Physics 66: 320-324. https://doi.org/10.1134/S1028335821110057

(18). Levin V, Zhuravskaya T (2022) Combustion and Plasma Chemistry 20(2): 93-101. https://doi.org/10.18321/cpc533

(19). Levin VA, Zhuravskaya TA (2023) J Eng Phys Thermophy 96: 1759-1768. https://doi.org/10.1007/s10891-023-02846-2

(20). Gurvich LV, Veyts IV (1989) Thermodynamic Properties of Individual Substances Ed [Termodinamicheskie svoystva individualnykh veshchestv] Vol. 1, Part 2. Hemisphere, New York. ISBN 0891167609.

(21). Bezgin LV, Kopchenov VI, Sharipov AS, Titova NS, Starik AM (2013) Combustion Science and Technology 185(1): 62-94. https://doi.org/10.1080/00102202.2012.709562

(22). Rodionov AV (1987) USSR Computational Mathematics and Mathematical Physics 27(2): 175-180. https://doi.org/10.1016/0041-5553(87)90174-1

(23). Voevodin Vl, Antonov A, Nikitenko D, Shvets P, Sobolev S, Sidorov I, Stefanov K, Voevodin Vad, Zhumatiy S (2019) Supercomputing Frontiers and Innovations 6(2): 4-11. https://doi.org/10.14529/jsfi190201

(24). Soloukhin RI (1966) Shock Waves and Detonations in Gases. Mono Book, Baltimore. P. 176.

(25). Lee JHS (2008) The Detonation Phenomenon. Cambridge University Press, Cambridge. P. 400. ISBN 978-0521897235

(26). Pintgen F, Eckett CA, Austin JM, Shepherd JE (2003) Combustion and Flame 133(3): 211-229. https://doi.org/10.1016/S0010-2180(02)00458-3

(27). Levin VA, Zhuravskaya TA (2023) Technical Physics Letters 49(9): 79-82. https://journals.ioffe.ru/articles/56717

(28). Zhuravskaya TA, Levin VA (2024) Fluid Dyn 59: 304-313. https://doi.org/10.1134/S0015462823603224

(29). Kumar DS, Ivin K, Singh AV (2021) Proceedings of the Combustion Institute 38(3): 3825-3834. https://doi.org/10.1016/j.proci.2020.08.061

(30). Yujie H, Xiaoyang L, Xianshu L, Xiaozhe Y, Xingqing Y, Jianliang Y (2022) Fuel 330: 125555. https://doi.org/10.1016/j.fuel.2022.125555

(31). Kumar R (1990) Combust Flame 80(2): 157-69. https://doi.org/10.1016/0010-2180(90)90124-A

Published

2024-10-20

How to Cite

Levin, V., & Zhuravskaya, T. (2024). Control of detonation combustion of hydrogen-air mixture. Combustion and Plasma Chemistry, 22(3), 149–157. https://doi.org/10.18321/cpc22(3)149-157