Visualization of the hydrogen-air flame front based on the emission of hydroperoxyl

Authors

  • V.M. Bocharnikov Joint Institute for High Temperatures of Russian Academy of Sciences, 13 bld. 2, Izhorskaya st., Moscow, Russia
  • V.V. Volodin Joint Institute for High Temperatures of Russian Academy of Sciences, 13 bld. 2, Izhorskaya st., Moscow, Russia
  • V.V. Golub Joint Institute for High Temperatures of Russian Academy of Sciences, 13 bld. 2, Izhorskaya st., Moscow, Russia
  • V.V. Stakhanov Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of technical Physics, 13, Vasil’eva st., Snezhinsk, Chelyabinsk region, Russia
  • V.A. Simonenko Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of technical Physics, 13, Vasil’eva st., Snezhinsk, Chelyabinsk region, Russia

DOI:

https://doi.org/10.18321/cpc22(3)141-148

Keywords:

hydrogen-air flame, infrared imaging, hydroperoxyl, light filter, flame radiation

Abstract

Modern development of energy and industry is associated with the use of hydrogen as an energy carrier, an intermediate or by-product of the process. Ensuring safety is one of the priorities when developing new objects. In this context, the development of combustion diagnostic methods is an urgent fundamental and applied task. The article proposes a method for visualizing a flame with the release of radiation from hydroperoxyl (HO2), an intermediate product of the combustion of hydrogen in air. A series of experiments on infrared visualization of the flame front was carried out using light filters to isolate radiation with a wavelength of 3040 nm, corresponding to the maximum emission of hydroperoxyl (HO2). Analysis of the results shows the promise of the method for refining chemical reaction models and validating numerical simulation codes.

References

(1). Ajayi-Oyakhire O (2012) Tech. Rep. Institution of Gas Engineers and Managers N 214001: 47.

(2). Zhapbasbaev UK, Makashev EP (2015) Combustion and plasma chemistry 13: 3-10. (In Russian). https://cpc-journal.kz/index.php/cpcj/article/view/298

(3). Arutyunov VS (2021) Combustion and plasma chemistry 19: 245-255. (In Russian). https://doi.org/10.18321/cpc462

(4). Arutyunov VS, Troshin KYa, Belyaev AA, Arutyunov AV, Nikitin AV, Strekova LN (2020) Combustion and plasma chemistry 18: 61-80. (In Russian). https://doi.org/10.18321/cpc349

(5). Gutmark E, Parr TP, Hanson-Parr DM, Schadow KC (1991) Experiments in Fluids. 12: 10-16. https://doi.org/10.1007/BF00226560

(6). Kim WK, Mogi T, Dobashi R (2013) Journal of Loss Prevention in the Process Industries 26: 1501-1505. https://doi.org/10.1016/j.jlp.2013.09.009

(7). Talroze VL, Poroikova AI (1978) Advances in chemistry [Uspekhi khimii]. 47: 955-966. (in Russian)

(8). Konnov AA (2008) Combustion and Flame 152: 507-528. https://doi.org/10.1016/j.combustflame.2007.10.024

(9). U.S. Secretary of Commerce on behalf of the United States of America. NIST Chemistry WebBook, SRD 69. (2023) Hydroperoxy radical https://webbook.nist.gov/cgi/cbook.cgi?Source=1997FIN%2FRAM304&Mask=800.

(10). Vargin VV, Weinberg TI (1967) Colored glass catalog [Katalog tsvetnogo stekla] Publishing house «Mechanical Engineering», Moscow. (in Russian)

(11). Losev SA (1976) Scientific report of Institute of Mechanics MSU [Nauchnye trudy. Institut Mekhaniki MGU]. 43: 3-21. (in Russian)

(12). Bivol G, Gavrikov A, Golub V, Elyanov A, Volodin V (2021) Experimental Thermal and Fluid Science 121: 110265. https://doi.org/10.1016/j.expthermflusci.2020.110265

(13). Rebrov AK, Chekmarev SF, Chernyavina NM (1982) Journal of Applied Mechanics and Technical Physics [Prikladnaya mekhanika i tekhnicheskaya fizika]. 3: 27-32. (in Russian). https://www.sibran.ru/upload/iblock/023/023f46a4b8c3d1a3469f52b3e71afd73.pdf

(14). Shmakov AG, Kozlov VV, Litvinenko MV, Litvinenko YA (2019) Siberian Journal of Physics [Sibirskii fizicheskii zhurnal]. 14: 64-75. (in Russian). https://doi.org/10.25205/2541-9447-2019-14-3-64-75

(15). Kochergin DO, Abdrakhmanov RH, Lukashov VV, Terekhov VV (2016) Science Bulletin of the NSTU [Nauchnyj vestnik NGTU]. 62: 195-204. (in Russian). https://doi.org/10.17212/1814-1196-2016-1-195-204

(16). Hutny WP, Lee GK (1991) International Journal of Hydrogen Energy 16: 47-53. https://doi.org/10.1016/0360-3199(91)90059-R

Published

2024-10-20

How to Cite

Bocharnikov, V., Volodin, V., Golub, V., Stakhanov, V., & Simonenko, V. (2024). Visualization of the hydrogen-air flame front based on the emission of hydroperoxyl. Combustion and Plasma Chemistry, 22(3), 141–148. https://doi.org/10.18321/cpc22(3)141-148