Synthesis and structure of polycrystals MnCo2O4-GdCrO4

Authors

  • M.M. Mataev Kazakh National Women’s Pedagogical University, Gogol str., 114 k1, Almaty, Kazakhstan
  • G.S. Patrin Siberian Federal University, Svobodny ave., 79, Krasnoyarsk, Russia
  • A.A. Мeldeshov Kazakh National Women’s Pedagogical University, Gogol str., 114 k1, Almaty, Kazakhstan
  • K.Zh. Seitbekova Abai Kazakh National Pedagogical University, Dostyk аve., 13, Almaty, Kazakhstan
  • M.E. Zhaisanbaeva Kazakh National Women’s Pedagogical University, Gogol str., 114 k1, Almaty, Kazakhstan

Keywords:

spinel, perovskite, supercapacitor, battery, electrocatalyst, refrigerator, ferromagnetic, research, magnetocaloric, effect, parameters

Abstract

The article discusses the synthesis and structure of polycrystalline nanocomposite MnCo2O4-GdCrO4 material. The sol-gel method was used as a synthesis of the study. Using X-ray phase analysis (XPA), the structure of the synthesized nanomaterial composition was determined: spinel – cobalt manganate and perovskite – gadolinium chromite. Based on the results of the analysis, it was established that the polycrystalline two-phase composite is a system of spinel-cubic and perovskite-tetragonal types. Morphological analysis of the nanocomposite was carried out using a scanning electron microscope (SEM). According to the data obtained as a result of SEM, the elemental composition was confirmed and the average nanosize of the nanomaterial was obtained, and the content of the compound increased to x2000 was determined, the particle size of MnCo2O4 is 383-281 nm, GdCrO4 – 1.63-1.34 µm; increased to x4000, particle size – MnCo2O4 277-219 nm, GdCrO4 – 1.48-1.27 µm; increased to x6000, particle size – MnCo2O4 239-209 nm, GdCrO4 –1.21-1.07 µm.

References

(1). Uke SJ, Akhare VP, Bambole DR, Bodade AB, & Chaudhari GN (2017) Frontiers in Materials 4. Crossref

(2). Zhao X, Mao L, Cheng Q, Li J, Liao F, Yang G, Xie L, Zhao C, & Chen L (2020) Chemical Engineering Journal 387:124081. Crossref

(3). Li Y, Xiao H, Yi T, He Y, & Li X (2019) Journal of Energy Chemistry 31:54-78. Crossref

(4). Xiao H, Gui X, Yi T, Li Y, & Yue C (2018) Current Opinion in Solid State & Materials Science 22(4): 109-126. Crossref

(5). Cheng J, Wang W, Wang X, & Liu F (2020) Chemical Engineering Journal 393:124747. Crossref

(6). Kumar R (2020) Nano-Micro Letters 12:1. Crossref

(7). Yuvaraj S, Ahilan V, Shanmugam S, & Selvan RK (2016) International Journal of Hydrogen Energy 41(34):15199-15207. Crossref

(8). Oh TI, Ryu SG, & Oh H (2019) Dalton Transactions 48(3):945-953. Crossref

(9). Yang H, Zhu M, Guo X, Yan C, & Lin S (2019) ACS Omega 4(27):22325–22331. Crossref

(10). Lin Y, Liu Y, Cao D, & Gong Y (2020) CrystEngComm 22(8):1425-1435. Crossref

(11). Gonçalves JM, Silva MNT, Naik KK, Martins PR, Rocha DP, Nossol E, Muñoz RA, Angnes L, & Rout CS (2021) Journal of Materials Chemistry A Materials for Energy and Sustainability 9(6):3095-3124. Crossref

(12). Gao Y, Xia Y, Wan H, Xu X, & Jiang S (2019)Electrochimica Acta 301:294–303. Crossref

(13). Kong L, Lü C, Liu M, Luo Y, Kang L, Li X, & Walsh FC (2014) Electrochimica Acta 115:22-27. Crossref

(14). Venkatachalam V, Alsalme A, Alghamdi A, Jayavel R (2015). Journal of Electroanalytical Chemistry 756:94-100. Crossref

(15). Xu J, Sun Y, Lu M, Wang L, Zhang J, Qian J, & Liu X (2018) Acta Materialia 152:162-174. Crossref

(16). Sahoo S, Naik KK, & Rout CS (2015) Nanotechnology 26(45):455401. Crossref

(17). Nagamuthu S, Vijayakumar S, Lee S, & Ryu K (2016) Applied Surface Science 390:202-208. Crossref

(18). Li J, Xiong D, Wang L, Sari HMK, & Li X (2019) Journal of Energy Chemistry 37:66-72. Crossref

(19). Krishnan SG, Hasbi ARM, & Jose R (2016) Journal of Alloys and Compounds 656: 707-713. Crossref

(20). Hui KN, Hui KS, Tang Z, Jadhav VV, & Xia QX (2016) Journal of Power Sources 330:195-203. Crossref

(21). Akhtar MA, Sharma V, Biswas S, & Chandra A (2016) RSC Advances 6(98):96296-96305. Crossref

(22). Dong Y, Wang Y, Xu Y, Chen C, Wang Y, Jiao L, & Yuan H (2017) Electrochimica Acta 225:39-46. Crossref

(23). Huang T, Zhao C, Lin-Hua W, Lang X, Liu K, & Zhang H (2017) Ceramics International 43(2):1968-1974. Crossref

(24). Shanmugavadivel M, Dhayabaran VV, & Subramanian M (2019) Journal of Physics and Chemistry of Solids 133:15-20. Crossref

(25). Sannasi V & Karuppuchamy S (2020) Ceramics International 46(10):15510-15520. Crossref

(26). Li M, Yang W, Li J, Feng M, Li W, & Li H (2018) Nanoscale 10(5):2218-2225. Crossref

(27). Liu Z, Teng F, Chen Y, Abideen ZU, Gu W & Liu Z (2019) Energy Technology 7(9). Crossref

(28). Yu B, Gao Q, Zhang B, Meng X, Chen Z (2003) International Journal of Refrigeration 26(6):622-636. Crossref

(29). GschneidnerJr KA, Pecharsky VK, & Tsokol AO (2005) Reports on Progress in Physics 68(6):1479-1539. Crossref

(30). Palacios E, Tomasi C, Sáez-Puche R, santos‐García AJD, Fernández-Martínez F, Burriel R (2016) Physical Review 93(6). Crossref

(31). Brown GV (1976). Journal of Applied Physics 47(8):3673-3680. Crossref

(32). Pecharsky VK, & Gschneidner KA (1997) Physical Review Letters 78(23): 4494-4497. Crossref

(33). Khmelevskyi S, Mohn P (2000) Journal of Physics: Condensed Matter 12(45):9453-9464. Crossref

(34). Tishin A, Spichkin Y (2016) In CRC Press eBooks. Crossref

(35). Cheong S, Mostovoy M (2007) Nature Materials 6(1):13-20. Crossref

(36). Midya A, Khan N, Bhoi D, Mandal P (2012)Applied Physics Letters 101(13). Crossref

(37). Ballı M, Jandl S, Fournier P, Gospodinov M (2014) Applied Physics Letters 104(23). Crossref

(38). Franco V, Blázquez J, Ingale B, Conde A (2012) Annual Review of Materials Research 42(1): 305-342. Crossref

(39). Мataev MM, Patrin GS, Seitbekova KZh, Tursinova ZhY, Abdraimova MR (2019) Chemical journal of Kazakhstan: 207-216. ISSN 1813-1107

Downloads

Published

2024-06-17

How to Cite

Mataev, M., Patrin, G., Мeldeshov A., Seitbekova, K., & Zhaisanbaeva, M. (2024). Synthesis and structure of polycrystals MnCo2O4-GdCrO4. Combustion and Plasma Chemistry, 22(2), 123–130. Retrieved from https://cpc-journal.kz/index.php/cpcj/article/view/438