Modification of bitumen and asphalt concrete with carbon nanomaterials: brief review

Authors

  • A.R. Kenzhegaliyeva Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • A.B. Zhambolova Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • Y.K. Ongarbayev Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc22(2)109-122

Keywords:

bitumen, polymer bitumen binder, asphalt concrete mixtures, carbon nanotubes, modification

Abstract

The brief review article examines the modification of petroleum bitumen and asphalt concrete mixtures with carbon nanomaterials. Carbon nanotubes, fullerenes and graphene were chosen as carbon nanomaterials. The influence of carbon nanomaterial additives on the physical and mechanical characteristics of bitumen, polymer bitumen binders and asphalt concrete mixtures is shown. The content of carbon nanomaterials when modifying bitumen, polymer-bitumen binders and asphalt concrete mixtures does not exceed 5 wt.%, on average leaves about 1 wt.%. Modification of bitumen and asphalt concrete mixtures with carbon nanomaterials leads to an increase in the softening temperature, viscosity, compressive strength and a decrease in penetration and ductility. At the same time, the degree of efficiency of bitumen and the parameter of resistance to rutting are improved. The review also provides information on the mechanism of action of carbon nanomaterials on the composition and properties of bitumen and asphalt concrete. The advantages and disadvantages of modifying bitumen, polymer bitumen binders and asphalt concrete mixtures with carbon nanomaterials are shown. The use of bitumen binders modified with nanomaterials for road surfaces is economically beneficial due to a manifold increase in their service life. Further research is needed to better understand the use of nanomaterials as a bitumen modifier at a fundamental level, as well as its performance characteristics.

References

(1). Fang C, Yu R, Liu S, Li Y (2013) J. Mater. Sci. Technol. 29 (7):589-594. Crossref

(2). Shafabakhsh GA, Sadeghnejad M, Alizadeh S (2023) Balt. J. Road Bridge Eng. 18 (2):1-31. Crossref

(3). Oda AW, El-Desouky A, Mahdy H, Moussa OM (2022) Int. J. Arch. Environ. Eng. 16 (3):85-90.

(4). Calandra P, Loise V, Porto M, Rossi CO, Lombardo D, Caputo P (2020) Appl. Sci. 10:5230. Crossref

(5). Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SG, Park CR (2012) Carbon 50:3-33. Crossref

(6). Diachkov PN (2011). Carbon nanotubes: structure, properties, application [Uglerodnyye nanotrubki: stroyeniye, svoystva, primeneniye]. Мoscow: Binom. – 488 p. (In Russian).

(7). Eletskii AV (2004) Advances in Physical Sciences 174:1191-1231. (In Russian). Crossref

(8). Zaporotskova IV (2009) Carbon and non-carbon nanomaterials and composite structures based on them: structure and electronic properties [Uglerodnyye i neuglerodnyye nanomaterialy i kompozitnyye struktury na ikh osnove: stroyeniye i elektronnyye svoystva] – Volgograd: VolSU Publishing House. – 469 p. (In Russian).

(9). Harris P (2003) Carbon nanotubes and related structures. New materials of the XXI century. [Uglerodnyye nanotruby i rodstvennyye struktury. Novyye materialy XXI veka]– M.: Tekhnosfera. – 364 p. (In Russian).

(10). Inozemtsev SS, Korolev YV (2013) Bull. MGSU 10:131-139. (In Russian). Crossref

(11). Zaporotskova IV, Arkharova IV (2015) Bull. VolSU 3:103-109. (In Russian). Crossref

(12). Patent of Russia 2515007. Method of strengthening asphalt road surfaces with carbon nanomaterial / Zaporotskova IV, Siplivy BN (2014) Bull. No. 13.

(13). Yartsev VP, Dolzhenkova MV, Petrova NV (2014) Bull. TSTU 20:801-809. (In Russian).

(14). Shestakov NI, Urkhanova LA, Buyantuev SL (2015) Bull. BSTU 6:21-24. (In Russian).

(15). Grinyuk II, Prilutskaya SV, Slobodyanik NS (2013) Biotechnol. acta. 6. (In Russian).

(16). Belova NA, Israilova ZS, Strakhova NA (2016) Bull. DSTU 2:139-150. (In Russian). Crossref

(17). Shestakov NI (2015) Modification of asphalt concrete with carbon nanoadditives [Modifikatsiya asfal’tobetona s uglerodnymi nanodobavkami]: diss. cand. tech. sci. – Ulan-Ude, 2015. – 132 p. (In Russian).

(18). Eisa MS, Mohamady A, Basiouny ME, Abdulhamid A, Kim JR (2022) Case Stud. Constr. Mater. 16:e00930. Crossref

(19). Ezzat EN, Al-Saadi IF, Jasim AF (2023) Adv. Civ. Eng. 3248035. Crossref

(20). Amin I, El-Badawy SM, Breakah T, Ibrahim MHZ (2016) Am. J. Civ. Eng. Arch. 4(3):90-97.

(21). ul Haq MF, Ahmad N, Nasir MA, Jamal, Hafeez M, Rafi J, Zaidi SBA, Haroon W (2018) Appl. Sci. 8:2651. Crossref

(22). Li Z, Yu X, Liang Y, Wu S (2021) Materials 14:2585. Crossref

(23). Gong Y, Xu J, Yan E, Cai J (2021) Front. Mater. 7:599551. Crossref

(24). Zhu D, Kong L (2023) Case Stud. Constr. Mater. 18:e01944. Crossref

(25). Kenzhegalieva AR, Abdikhan DB, Ongarbayev YK (2022) Combustion and plasma chemistry 20:133-141. Crossref

(26). Zhambolova A, Ongarbayev Y, Kenzhegaliyeva A, Abdikhan D (2023) J. Ecol. Eng. 24:218-226. Crossref

(27). ul Haq MF, Ahmad N, Jamal M, Anwar W, Khitab A, Hussan S (2020) Emerg. Mater. Res. 1800115. Crossref

(28). Loos M (2014) Carbon Nanotube Reinforced Composites: CNT Polymer Science and Technology. William Andrew: 304. Crossref

(29). Zhang P, Zhou T, He L, Zhang S, Sun J, Wang J, Qin C, Dai L (2015) RSC Adv. 5:55492-55498. Crossref

(30). Shekhovtsova SY, Vysotskaya M (2017) Bull. KGASU 4:335-342. (In Russian).

(31). Shekhovtsova SY, Vysotskaya MA (2015) Bull. MGSU 11:110-119. (In Russian). Crossref

(32). Guvalov A, Mammadov А (2023) E3S Web of Conf. 431:06001. Crossref

(33). Obukhova S, Korolev E, Gladkikh V (2023) Materials 16:7534. Crossref

(34). Naz F, Hu D, Ahmad B, Hayat Z (2021) Am. Acad. Sci. Res. J. Eng. Technol. Sci. 84 (1):130-145.

(35). Zeng Q, Liu Y, Liu Q, Xu Z (2023) Sci. Rep. 13:3496. Crossref

(36). Provatorova G, Vikhrev A (2020) IOP Conf. Ser.: Mater. Sci. Eng. 896:012088. Crossref

(37). Li W, Yao H, Yang D, Peng C, Wang H, Chen Z, Zhao Y (2023) Appl. Sci. 13:10287. Crossref

(38). Patent of Russia 2412126. Nanostructuring modifier for asphalt concrete / Kondratiev DN, Goldin VV, Merkelene NF (2011) Bull. No. 5.

(39). Gotovtsev VM, Shatunov AG, Rumyantsev AN, Sukhov VD (2013) Fundamental research 1:191-195. (In Russian).

(40). Patent of Russia 2561435. Mixture composition for asphalt concrete / Urkhanova LA, Shestakov NI, Buyantuev SL (2015) Bull. No. 24.

(41). Patent of Russia 2592509. Composition of asphalt concrete / Urkhanova LA, Shestakov NI, Semenov AP, Smirnyagina NN (2016) Bull. No. 20.

(42). Alekseenko VV, Saltanova YV (2012) Bull. ISTU 12:131-133. (In Russian).

(43). Kozlov PV, Merkulov SA, Abramov IY, Klishin IM (2014) Materials of the 9th scientific student conference “Problems of technogenic safety and sustainable development”. P. 205-207. (In Russian).

(44). Belyaev KV, Chulkova IL (2019) SibADI Bull. 16:472-485. (In Russian). Crossref

(45). Inozemtsev SS, Korolev EV (2013) Bull. MGSU 10:131-139. (In Russian). Crossref .

(46). Bosholov KA, Bituev AV (2007) Bull. TGASU 3:210-212. (In Russian).

(47). Patent of Russia 2466161. Nanomodified asphalt concrete mixture / Khristoforova AA, Sokolova MD, Lebedev AV (2012).

(48). Inozemtsev SS, Korolev EV (2018) Bull. MGSU 13:536-543. (In Russian). Crossref

(49). Korniejenko K, Nykiel M, Choinska M, Jexembayeva A, Konkanov M, Aruova L (2023) 13:2948. Crossref

(50). Ramadhansyah PJ, Masri KA, Norhidayah AH, Hainin MR, Muhammad Naqiuddin MW, Haryati Y, Sata MKIM, Juraidah A (2020) IOP Conf. Ser.: Mater. Sci. Eng. 712:012023. Crossref

Published

2024-06-17

How to Cite

Kenzhegaliyeva, A., Zhambolova, A., & Ongarbayev, Y. (2024). Modification of bitumen and asphalt concrete with carbon nanomaterials: brief review. Combustion and Plasma Chemistry, 22(2), 109–122. https://doi.org/10.18321/cpc22(2)109-122