Production of electrodes based on porous graphene-like carbon from biomass for supercapacitors with high-performance
DOI:
https://doi.org/10.18321/cpc22(2)91-98Keywords:
biomass, electrode, graphene-like carbon, supercapacitor, carbonization, activation, grapheneAbstract
This article presents the synthesis of graphene-like carbon (GLC) from coffee waste (CW) for use as a precursor of electrode materials for energy storage devices. It was also synthesized by pre-carbonation at 550 °C and thermochemical activation in KOH at 850 °C in a tube furnace. SEM, BET, and Raman spectroscopy studied the structure and morphology of the resulting GLC-CW sample. Raman spectroscopic analysis confirmed the formation of multilayer graphene with numerous structural defects. Voltammetric and electrochemical characterization of the sample was carried out using a potentiostat-galvanostat. Also, GPU-CW showed a high specific surface area of 2136 m2 g-1 according to the Brunauer-Emmett-Teller (BET) method. The synthesized GLC-CW powder was used as the active material in assembling a double-layer electrochemical capacitor. The electrochemical characteristics of the assembled capacitors showed a specific capacitance value of 223 F/g at a current density of 0.5 A/g, as well as high cyclic stability with capacity retention of at least 95% after 5000 cycles. The results indicate that graphene-like carbon from coffee waste is a promising material for creating high-voltage supercapacitors.
References
(1). Baxter J, Bian ZG, Chen, Danielson D, Dresselhaus MS, Fedorov AG, Fisher TS, Jones CW, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison DR, Sands T, Shi L, Sholl D, Wu Y (2009) Energy & Environmental Science 2:559–588. Crossref
(2). Dubey P, Shrivastav V, Maheshwari PH, Sundriyal S (2020) Carbon 170:29. Crossref
(3). Lee SY, Choi Y, Kim J, Lee J, Bae JS, Jeong ED (2021) J. Ind. Eng. Chem 94:272–281. Crossref
(4). Yu K, Wang J, Wang X, Liang J, Liang C (2020) Mater. Chem. Phys. 243:122644. Crossref
(5). Wang CH, Wen WC, Hsu HC, Yao BY (2016) Adv. Powder Tech. 27: 1387–1395. Crossref
(6). Ashraf CM, Anilkumar KM, Jinisha B, Manoj M, Pradeep VS, Jayalekshmi S (2018) J. Electrochem Soc 165:900-A909. Crossref
(7). Zhang X, Zhong Y, Xia X, Xia Y, Wang D, Zhou C, Tang W, Wang X, Wu J.B, Tu J (2018) ACS Appl. Mater. Interfaces. 1-30. . Crossref
(8). Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) J. Phys. Chem. C. 113:13103–13107. Crossref
(9). Yeleuov M, Daulbayev C, Taurbekov A, Abdisattar A, Ebrahim R, Kumekov S, Prikhodko N, Lesbayev B, Batyrzhan K (2021) Diam. Relat. Mater 119:108560. Crossref
(10). Lee J, Hwang T, Oh J, Kim J.M, Jeon Y, Piao Y (2018) J. Alloys Compd 736:42–50. Crossref
(11). Adan-Mas A, Alcaraz L, Arévalo-Cid P, Félix A, López-Gómez, Montemor F (2021) Waste Management 120:280–289. Crossref
(12). Chiu Y.-H, Lin L.-Y, (2019) Journal of the Taiwan Institute of Chemical Engineers 101:177–185. Crossref
(13). Bleu Y, Bourquard F, Loir A, Barnier V, Garrelie F, Donnet C (2019) J. Raman Spectrosc 50:1630–1641. Crossref
(14). Yang H, Tang Y, Huang X, Wang L, Zhang Q (2017) J. Mater. Sci. Mater. Electron 28:18637–18645. Crossref
(15). Rajesh M, Manikandan R, Park S, Kim B. C, Cho W, Yu K. H, Raj C. J (2020) Int. J. Energy Res 44:8591–8605. Crossref
(16). Sankar S, Lee H, Jung H, Kim A, Ahmed AT, Inamdar AI, Kim H, Lee S, Im H, Young K (2017) New J. Chem 41:13792–13797. Crossref
(17). Mi J, Wang X, Fan R, Qu W, Li W (2012) Energy Fuels 26:5321–5329. Crossref
(18). Misnon II, Zain NK, Jose R (2019) Waste Biomass Valorization 10:1731–1740. Crossref