Functionalised carbon materials obtained from rice husk for membrane and inversion capacitive deionisation applications

Authors

  • A.Yu. Zakharov Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • A.V. Tukesheva Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • E.S. Ihsanov Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • Zh.A. Supieva Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • Zh.E. Ayaganov Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan
  • V.V. Pavlenko Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71, Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc22(1)37-48

Keywords:

capacitive deionisation, inverted capacitive deionisation, activated carbon, biochar

Abstract

Capacitive water deionisation (CDI) is attracting a lot of attention as a promising low-cost and energy-efficient desalination technology. The low cost of the device is primarily due to the possibility of using carbon materials from natural raw materials. One of the recent concepts of CDI development involves the use of inverted potential profile during operation (sorption at 0 V, desorption at low potential value), which further reduces the energy consumption of the system. The operation of such a system requires the use of carbon materials carrying a surface charge that will ensure sorption in the absence of an external potential. In the present work, we present a simple two-step methodology for the creation of highly porous carbon materials from rice husk and their subsequent chemical functionalisation with nitrogen-containing -NO2 and -NH2 groups carrying negative and positive charges, respectively. By using the modified materials, high values of specific capacitance of 253 F/g were achieved. The application of the obtained materials as electrodes in CDI membrane and inversion cells demonstrated their high efficiency, increasing the maximum specific adsorption capacity (SAC) by 15% (to 16.91 mg/g) compared to symmetric membrane cells using unmodified carbons.

References

(1). Fricke K. (2014). Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development: The Water Resource Challenge and Adaptation Measures for Urumqi Region, Northwest China. Springer International Publishing. ISBN: 978-3-319-37647-9

(2). He C, Liu Z, Wu J, Pan X, Fang Z, Li J, & Bryan, BA (2021) Nature Communications 12(1): 4667. https://doi.org/10.1038/s41467-021-25026-3

(3). Qin Y, Mueller ND, Siebert S, Jackson RB, AghaKouchak A, Zimmerman JB, Tong D, Hong C, & Davis SJ (2019) Nature Sustainability 2(6):515–523. https://doi.org/10.1038/s41893-019-0294-2

(4). Liu X, Shanbhag S, Bartholomew TV, Whitacre JF, Mauter MS (2021) ACS ES&T Engineering 1(2):261-273. https://doi.org/10.1021/acsestengg.0c00094

(5). Bales C, Lian B, Zhu Y, Zhou H, Wang Y, Fletcher J, & Waite TD (2023) Desalination 559:116647. https://doi.org/10.1016/j.desal.2023.116647

(6). Tan C, He C, Tang W, Kovalsky P, Fletcher J, Waite TD (2018) Water Research 147:276-286. https://doi.org/10.1016/j.watres.2018.09.056

(7). Gude VG (2016) Water Research 89: 87-106. https://doi.org/10.1016/j.watres.2015.11.012

(8). Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V (2015) Energy & Environmental Science 8(8):2296-2319. https://doi.org/10.1039/C5EE00519A

(9). Volfkovich YuM (2020) Russian Journal of Electrochemistry 56(1):18–51. https://doi.org/10.1134/S1023193520010097

(10). Folaranmi G, Bechelany M, Sistat P, Cretin M, Zaviska F (2020) Membranes 10(5):96. https://doi.org/10.3390/membranes10050096

(11). Cheng Y, Hao Z, Hao C, Deng Y, Li X, Li K, Zhao Y (2019). RSC Advances 9(42):24401-24419. https://doi.org/10.1039/C9RA04426D

(12). Barcelos KM, Oliveira KSGC, Ruotolo LAM (2020) Desalination 492: 114594. https://doi.org/10.1016/j.desal.2020.114594

(13). Zakharov A, Tukesheva A, Pavlenko V, Bin Haque SF, Ferraris J, Zakhidov A, Tazhibayeva, T, Bazarbayeva T(2023) Bulletin of the Karaganda University. ‘Physics’ Series, 111(3): 16-33. https://doi.org/10.31489/2023PH3/16-33

(14). Kim M, Cerro M, Hand S, & Cusick RD (2019). Water Research 148: 388-397 https://doi.org/10.1016/j.watres.2018.10.044

(15). Lee JH, Choi JH (2012) Journal of Membrane Science 409–410:251-256. https://doi.org/10.1016/j.memsci.2012.03.064

(16). Pawlowski S, Huertas RM, Galinha CF, Crespo J G, & Velizarov S (2020) Desalination 476: 114183. https://doi.org/10.1016/j.desal.2019.114183

(17). Hu CC, Hsieh CF, Chen YJ, Liu CF (2018)Desalination 442: 89-98. DOI: https://doi.org/10.1016/j.desal.2018.05.013

(18). Sayed ET, Olabi AG, Shehata N, Radi MA, Muhaisen OM, Rodriguez C, Atieh MA, & Abdelkareem MA (2023) Ain Shams Engineering Journal 14(8): 102030. https://doi.org/10.1016/j.asej.2022.102030

(19). Zeng ZH, Yan LL, Li GH, Rao PH, Sun YR, & Zhao ZY (2023) New Carbon Materials 38(5): 837-860. https://doi.org/10.1016/S1872-5805(23)60779-6

(20). Arkhipova EA, Novotortsev RYu, Ivanov AS, Maslakov KI, & Savilov SV (2022). Journal of Energy Storage 55: 105699. https://doi.org/10.1016/j.est.2022.105699

(21). Pavlenko V, & Supiyeva Zh (2020) Eurasian Chemico-Technological Journal 22(4): 277. https://doi.org/10.18321/ectj996

(22). Silva AP, Argondizo A, Juchen PT, & Ruotolo LAM (2021) Separation and Purification Technology 271:118872. https://doi.org/10.1016/j.seppur.2021.118872

(23). Tian W, Zhang H, Duan X, Sun H, Shao G, Wang S (2020) Advanced Functional Materials 30(17):1909265. https://doi.org/10.1002/adfm.201909265

(24).Matsagar BM, Yang RX, Dutta S, Ok YS, & Wu K CW (2021) Journal of Materials Chemistry A 9(7):3703-3728. DOI: https://doi.org/10.1039/D0TA09706C

(25). Yao Z, Shao P, Fang D, Shao J, Li D, Liu L, Huang Y, Yu Z, Yang L, Yu K, & Luo X (2022) Chemical Engineering Journal 427: 131470. https://doi.org/10.1016/j.cej.2021.131470

(26).Wu T, Wang G, Dong Q, Qian B, Meng Y, Qiu J (2015) Electrochimica Acta 176: 426-433. https://doi.org/10.1016/j.electacta.2015.07.037

(27).Niu R, Li H, Ma Y, He L, Li J (2015)Electrochimica Acta 176: 755-762. https://doi.org/10.1016/j.electacta.2015.07.012

(28).Li F, Ahmad A, Xie L, Sun G, Kong Q, Su F, Ma Y, Chao Y, Guo X, Wei X, Chen CM (2019). Electrochimica Acta 318:151-160 https://doi.org/10.1016/j.electacta.2019.06.057

(29). Watkins JD, Lawrence R, Taylor JE., Bull SD, Nelson GW, Foord JS, Wolverson D, Rassaei L, Evans NDM, Gascon SA, Marken F (2010). Physical Chemistry Chemical Physics 12(18): 4872-4878. https://doi.org/10.1039/B927434K

(30). Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, & Bianco A (2004) Angewandte Chemie International Edition 43(39): 5242-5246. https://doi.org/10.1002/anie.200460437

(31). Biniak S, Szymański G, Siedlewski J, Świątkowski A (1997) Carbon 35(12): 1799-1810. https://doi.org/10.1016/S0008-6223(97)00096-1

(32). Fretz SJ, Agostini M, Jankowski P, Johansson P, Matic A, Palmqvist AEC (2020) Batteries & Supercaps 3(8): 757-765. https://doi.org/10.1002/batt.202000027

(33). Teng W, Wu Z, Fan J, Zhang W, Zhao D (2015). Journal of Materials Chemistry A 3(37): 19168-19176. https://doi.org/10.1039/C5TA05320J

(34). Abe M, Kawashima K, Kozawa K, Sakai H, & Kaneko K (2000) 16(11): 5059-5063. https://doi.org/10.1021/la990976t

(35). Landon J, Gao X, Omosebi A, Liu K (2021). E Environmental Science: Water Research & Technology 7(5): 861-869. https://doi.org/10.1039/D1EW00005E

(36). Zhao S, Yan T, Wang H, Zhang J, Shi L, & Zhang D (2016) ACS Applied Materials & Interfaces 8(28): 18027-18035. https://doi.org/10.1021/acsami.6b03704

(37). Choi JH, Yoon DJ (2019) Water Research, 157:167-174. https://doi.org/10.1016/j.watres.2019.03.083

(38). Gao X, Omosebi A, Landon J, Liu K (2015)Environmental Science & Technology 49(18):10920–10926. https://doi.org/10.1021/acs.est.5b02320

(39). Haq O, Choi DS, Choi JH, & Lee YS (2020)Journal of Industrial and Engineering Chemistry 83:136-144. https://doi.org/10.1016/j.jiec.2019.11.021

Published

2024-03-25

How to Cite

Zakharov, A., Tukesheva, A., Ihsanov, E., Supieva, Z., Ayaganov, Z., & Pavlenko, V. (2024). Functionalised carbon materials obtained from rice husk for membrane and inversion capacitive deionisation applications. Combustion and Plasma Chemistry, 22(1), 37–48. https://doi.org/10.18321/cpc22(1)37-48